共查询到20条相似文献,搜索用时 0 毫秒
1.
In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways, which are lipid breakdown, photorespiration and H2O2-detoxificaton. Recently, significant progress in the study of plant peroxisomes was established by forward-/reverse-genetics and post-genomic approaches using Arabidopsis thaliana, the first higher plant to have its entire genome sequenced. These studies illustrated that plant peroxisomes have more diverse functions than we previously thought. Research using Arabidopsis thaliana is improving our understanding of the function of plant peroxisomes. 相似文献
2.
Employing transgenic Arabidopsis plants, we analyzed the mechanism for the translocation of peroxisomal proteins from the cytosol into the matrix that is mediated by the N-terminal targeting signal. A hybrid Arabidopsis variety was generated which accumulates two kinds of originally bacterial proteins, beta-glucuronidase (GUS) and a GUS chimeric protein designated as CS-delta C42-GUS, that carries the N-terminal targeting signal for glyoxysomal citrate synthase. Because the CS-delta C42-GUS is targeted to peroxisomes but had never been observed to be processed to produce the mature protein, it can be distinguished from the GUS protein by its molecular size. Cell fractionation analyses showed that the native GUS protein, although lacking the targeting signal, was co-localized with the CS-delta C42-GUS protein in the peroxisomes of the hybrid plant. It is suggested that the native GUS protein forms oligomeric structures with the peroxisome-targeted chimeric proteins and can therefore be transported into peroxisomes. Sucrose density gradient centrifugation revealed that the native GUS and the chimeric GUS indeed are present both as a dimer and a tetramer in the Arabidopsis hybrid variety. 相似文献
3.
The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion 总被引:1,自引:0,他引:1
下载免费PDF全文

Identification of regulatory molecules that determine the extent and direction of expansion is necessary to understand how cell morphogenesis is controlled in plants. We recently identified COB (COBRA) as a key regulator of the orientation of cell expansion in the root. Analysis of the Arabidopsis genome sequence indicated that COB belongs to a multigene family consisting of 12 members, all predicted to encode glycosylphosphatidylinositol-anchored proteins. All but two of the COBL (COB-like) genes are expressed in most organs examined, suggesting possible redundancy. Sequence comparisons, phylogenetic analyses, and exon-intron positions revealed that the COB family is composed of two main subgroups sharing a common architecture, one subgroup being characterized by an additional N-terminal domain. Identification of expressed sequence tags corresponding to potential orthologs in other plant species suggested that COB-related functions are required in all vascular plants. Together, these results indicate that COB family members are likely to be important new players at the plasma membrane-cell wall interface. 相似文献
4.
Peroxisomes are organelles that confine an important set of enzymes within their single membrane boundaries. In man, a wide variety of genetic disorders is caused by loss of peroxisome function. In the most severe cases, the clinical phenotype indicates that abnormalities begin to appear during embryological development. In less severe cases, the quality of life of adults is affected. Research on yeast model systems has contributed to a better understanding of peroxisome formation and maintenance. This framework of knowledge has made it possible to understand the molecular basis of most of the peroxisome biogenesis disorders. Interestingly, most peroxisome biogenesis disorders are caused by a failure to target peroxisomal proteins to the organellar matrix or membrane, which classifies them as protein targeting diseases. Here we review recent fundamental research on peroxisomal protein targeting and discuss a few burning questions in the field concerning the origin of peroxisomes. 相似文献
5.
Joseph C. Mellor Itai Yanai Karl H. Clodfelter Julian Mintseris Charles DeLisi 《Nucleic acids research》2002,30(1):306-309
The current deluge of genomic sequences has spawned the creation of tools capable of making sense of the data. Computational and high-throughput experimental methods for generating links between proteins have recently been emerging. These methods effectively act as hypothesis machines, allowing researchers to screen large sets of data to detect interesting patterns that can then be studied in greater detail. Although the potential use of these putative links in predicting gene function has been demonstrated, a central repository for all such links for many genomes would maximize their usefulness. Here we present Predictome, a database of predicted links between the proteins of 44 genomes based on the implementation of three computational methods—chromosomal proximity, phylogenetic profiling and domain fusion—and large-scale experimental screenings of protein–protein interaction data. The combination of data from various predictive methods in one database allows for their comparison with each other, as well as visualization of their correlation with known pathway information. As a repository for such data, Predictome is an ongoing resource for the community, providing functional relationships among proteins as new genomic data emerges. Predictome is available at http://predictome.bu.edu. 相似文献
6.
7.
Eubel H Meyer EH Taylor NL Bussell JD O'Toole N Heazlewood JL Castleden I Small ID Smith SM Millar AH 《Plant physiology》2008,148(4):1809-1829
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane. 相似文献
8.
Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins 总被引:7,自引:0,他引:7
Hussey PJ Allwood EG Smertenko AP 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1422):791-798
The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct. 相似文献
9.
10.
S J Gould G A Keller N Hosken J Wilkinson S Subramani 《The Journal of cell biology》1989,108(5):1657-1664
The firefly luciferase protein contains a peroxisomal targeting signal at its extreme COOH terminus (Gould et al., 1987). Site-directed mutagenesis of the luciferase gene reveals that this peroxisomal targeting signal consists of the COOH-terminal three amino acids of the protein, serine-lysine-leucine. When this tripeptide is appended to the COOH terminus of a cytosolic protein (chloramphenicol acetyltransferase), it is sufficient to direct the fusion protein into peroxisomes. Additional mutagenesis experiments reveal that only a limited number of conservative changes can be made in this tripeptide targeting signal without abolishing its activity. These results indicate that peroxisomal protein import, unlike other types of transmembrane translocation, is dependent upon a conserved amino acid sequence. 相似文献
11.
Mirouze M Sels J Richard O Czernic P Loubet S Jacquier A François IE Cammue BP Lebrun M Berthomieu P Marquès L 《The Plant journal : for cell and molecular biology》2006,47(3):329-342
The metal tolerance of metal hyper-accumulating plants is a poorly understood mechanism. In order to unravel the molecular basis of zinc (Zn) tolerance in the Zn hyper-accumulating plant Arabidopsis halleri ssp. halleri, we carried out a functional screening of an A. halleri cDNA library in the yeast Saccharomyces cerevisiae to search for genes conferring Zn tolerance to yeast cells. The screening revealed four A. halleri defensin genes (AhPDFs), which induced Zn but not cadmium (Cd) tolerance in yeast. The expression of AhPDF1.1 under the control of the 35S promoter in A. thaliana made the transgenic plants more tolerant to Zn than wild-type plants, but did not change the tolerance to Cd, copper (Cu), cobalt (Co), iron (Fe) or sodium (Na). Thus, AhPDF1.1 is able to confer Zn tolerance both to yeast and plants. In A. halleri, defensins are constitutively accumulated at a higher level in shoots than in A. thaliana. A. halleri defensin pools are Zn-responsive, both at the mRNA and protein levels. In A. thaliana, some but not all defensin genes are induced by ZnCl2 treatment, and these genes are not induced by NaCl treatment. Defensins, found in a very large number of organisms, are known to be involved in the innate immune system but have never been found to play any role in metal physiology. Our results support the proposition that defensins could be involved in Zn tolerance in A. halleri, and that a role for plant defensins in metal physiology should be considered. 相似文献
12.
Cystine lyases catalyze the breakdown of l-cystine to thiocysteine, pyruvate, and ammonia. Until now there are no reports of the identification of a plant cystine lyase at a molecular level, and it is not clear what biological role this class of enzymes have in plants. A cystine lyase was isolated from Brassica oleracea (L.), and partial amino acid sequencing allowed the corresponding full-length cDNA (BOCL3) to be cloned. The deduced amino acid sequence of BOCL3 showed highest homology to the deduced amino acid sequences of several Arabidopsis thaliana genes annotated as tyrosine aminotransferase-like, including a coronatine, jasmonic acid, and salt stress-inducible gene, CORI3 (78.8% identity), and the unidentified rooty/superroot1 gene (44.8% identity). A full-length expressed sequence tag clone of CORI3 was obtained and recombinant CORI3 was synthesized in Escherichia coli. Isolated recombinant CORI3 catalyzed a cystine lyase reaction, but no aminotransferase reactions. The present study identifies, for the first time, a cystine lyase from plants at a molecular level and redefines the functional assignment of the only functionally identified member of a group of A. thaliana genes annotated as tyrosine aminotransferase-like. 相似文献
13.
Makoto Hayashi Kanako Toriyama Maki Kondo Akira Kato Shoji Mano Luigi De Bellis Yasuko Hayashi-Ishimaru Katsushi Yamaguchi Hiroshi Hayashi Mikio Nishimura 《Cell biochemistry and biophysics》2000,32(1-3):295-304
Peroxisomes in higher plant cells are known to differentiate into at least three different classes, namely, glyoxysomes, leaf
peroxisomes, and unspecialalized peroxisomes, dependending on the cell types. In germinating fatty seedlings, glyoxysomes
that first appear in the etiolated cotyledonary cells are functionally transformed into leaf peroxisomes during greening.
Subsequently, the organelles are transformed back into glyoxysomes during senescence of the cotyledons. Flexibility of function
is a distinct feature of plant peroxisomes. This article briefly describes recent studies of the regulatory mechanisms involved
in the changes of the function of plant peroxisomes. 相似文献
14.
Schwacke R Schneider A van der Graaff E Fischer K Catoni E Desimone M Frommer WB Flügge UI Kunze R 《Plant physiology》2003,131(1):16-26
A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, putative integral membrane proteins were identified among the approximately 25,500 proteins in the Arabidopsis genome DBs. By averaging the predictions from seven programs, approximately 6,500 proteins were classified as transmembrane (TM) candidate proteins. Some 1,800 of these contain at least four TM spans and are possibly linked to transport functions. The ARAMEMNON DB enables direct comparison of the predictions of seven different TM span computation programs and the predictions of subcellular localization by eight signal peptide recognition programs. A special function displays the proteins related to the query and dynamically generates a protein family structure. As a first set of proteins from other organisms, all of the approximately 700 putative membrane proteins were extracted from the genome of the cyanobacterium Synechocystis sp. and incorporated in the ARAMEMNON DB. The ARAMEMNON DB is accessible at the URL http://aramemnon.botanik.uni-koeln.de. 相似文献
15.
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import. 相似文献
16.
Ward JM 《Bioinformatics (Oxford, England)》2001,17(6):560-563
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these. 相似文献
17.
Monroe-Augustus M Ramón NM Ratzel SE Lingard MJ Christensen SE Murali C Bartel B 《Plant molecular biology》2011,77(1-2):1-15
Mutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants. 相似文献
18.
S Y Rhee S Weng D K Bongard-Pierce M García-Hernndez A Malekian D J Flanders J M Cherry 《Nucleic acids research》1999,27(1):79-84
In the past several years, there has been a tremendous effort to construct physical maps and to sequence the genome of Arabidopsis thaliana. As a result, four of the five chromosomes are completely covered by overlapping clones except at the centromeric and nucleolus organizer regions (NOR). In addition, over 30% of the genome has been sequenced and completion is anticipated by the end of the year 2000. Despite these accomplishments, the physical maps are provided in many formats on laboratories' Web sites. These data are thus difficult to obtain in a coherent manner for researchers. To alleviate this problem, AtDB (Arabidopsis thaliana DataBase, URL: http://genome-www.stanford.edu/Arabidopsis/) has constructed a unified display of the physical maps where all publicly available physical-map data for all chromosomes are presented through the Web in a clickable, 'on-the-fly' graphic, created by CGI programs that directly consult our relational database. 相似文献
19.
Volatile profiling of Arabidopsis thaliana - putative olfactory compounds in plant communication 总被引:1,自引:0,他引:1
Arabidopsis thaliana from the Brassicaceae family has arisen as the model organism in plant biology research. The plant's genome has been characterized and worldwide studies are conducted at the genetic, protein and metabolic level to unravell the function of genes involved in growth, reproduction, biosynthesis, and plant communication. As part of the multidisciplinary project BIOEMIT at NTNU, metabolomic studies of Arabidopsis T-DNA knock-out mutants and ecotypes have been carried out. Volatile profiles of autolyzed, intact plants and single plant organs were obtained by solid-phase microextraction coupled with gas chromatography-mass spectrometry. The studies were aimed at the diversity of defense-related compounds from the glucosinolate-myrosinase system - the isothiocyanates and nitriles. Metabolites from methionine, leucine and phenylalanine-derived glucosinolates were most abundant (4-methylthiobutyl, 4-methylpentyl, 2-phenylethyl). In addition, 24 monoterpenes, 26 sesquiterpenes and 12 aromatic structures, predominantly observed in inflorescenses, are described. Excluding the vast group of straight chain aliphatic structures, a total of 102 volatile compounds were detected, of which 59 are reported in Arabidopsis thaliana for the first time, thus emphasizing the sensitivity and applicability of solid-phase microextraction for volatile profiling of plant secondary metabolites. 相似文献