共查询到20条相似文献,搜索用时 0 毫秒
1.
Disentangling the Litter Quality and Soil Microbial Contribution to Leaf and Fine Root Litter Decomposition Responses to Reduced Rainfall 总被引:1,自引:0,他引:1
Pablo García-Palacios Iván Prieto Jean-Marc Ourcival Stephan Hättenschwiler 《Ecosystems》2016,19(3):490-503
Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change. 相似文献
2.
Effect of Inoculation and Leaf Litter Amendment on Establishment of Nodule-Forming Frankia Populations in Soil
下载免费PDF全文

Anja Nickel Oliver Pelz Dittmar Hahn Matthias Saurer Rolf Siegwolf Josef Zeyer 《Applied microbiology》2001,67(6):2603-2609
High-N2-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [15N]NO3 and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N2 fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N2 fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% ± 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% ± 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% ± 6%) than by group IV (81% ± 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N2 fixation rates by 15N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N2-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N2-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance. 相似文献
3.
The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China 总被引:2,自引:0,他引:2
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. 相似文献
4.
Sarah E. Hobbie 《Ecosystems》2000,3(5):484-494
Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more
strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter
C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding
to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I
obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing
precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including
the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control
plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin
litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did
not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition
at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even
though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition
may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by
high-lignin litter.
Received 26 October 1999; accepted 2 June 2000. 相似文献
5.
Mao Z. Wang Yu. Ma X. Jiang H. Zu Yu. Voronin P. Yu. 《Russian Journal of Plant Physiology》2004,51(4):508-512
A greenhouse experiment, which imitated a short (4-day-long) and progressive (3-week-long) soil drought, was employed to assess, with an IR gas analyzer, leaf CO2 exchange rate (CER) in intact one-year-old seedlings of Betula platyphylla as related to the flux of photosynthetically active radiation ranging from 0 to 1400 E/(m2 s). The registered indices comprised leaf temperature, leaf transpiration conductivity, and the average daily increment of the leaf area. Within a week period following the transition from the short severe soil drought (20% H2O per soil weight) to the conditions of sufficient water content (35–40%), the plants completely regained the initial leaf CER. Under the progressive soil drought, leaf CER was reduced by 30–35%, as compared to the conditions of sufficient water content, evidently due to a 3.7-fold drop in the transpiration conductivity as compared to the control plants. The apparent constant of Rubisco carboxylation and leaf respiration in the light were not affected by the drought period. The rate of leaf growth under the progressive drought was reduced by 64% as compared to the sufficient moisture conditions. Thus, under the progressive drought, the diminished stomatal conductivity reduced CO2 concentration inside the leaf and lowered carbon photosynthetic assimilation. Meanwhile, the leaf source activity considerably increased in spite of diminished photosynthesis. 相似文献
6.
Wu L Feinstein LM Valverde-Barrantes O Kershner MW Leff LG Blackwood CB 《Microbial ecology》2011,61(2):399-409
Because of conflicting results in previous studies, it is unclear whether litter diversity has a predictable impact on microbial
communities or ecosystem processes. We examined whether effects of litter diversity depend on factors that could confound
comparisons among previous studies, including leaf type, habitat type, identity of other leaves in the mixture, and spatial
covariance at two scales within habitats. We also examined how litter diversity affects the saprotrophic microbial community
using terminal restriction fragment length polymorphism to profile bacterial and fungal community composition, direct microscopy
to quantify bacterial biomass, and ergosterol extraction to quantify fungal biomass. We found that leaf mixture diversity
was rarely significant as a main effect (only for fungal biomass), but was often significant as an interaction with leaf type
(for ash-free dry mass recovered, carbon-to-nitrogen ratio, fungal biomass, and bacterial community composition). Leaf type
and habitat were significant as main effects for all response variables. The majority of variance in leaf ash-free dry mass
and C/N ratio was explained after accounting for treatment effects and spatial covariation at the meter (block) and centimeter
(litterbag) scales. However, a substantial amount of variability in microbial communities was left unexplained and must be
driven by factors at other spatial scales or more complex spatiotemporal dynamics. We conclude that litter diversity effects
are primarily dependent on leaf type, rather than habitat type or identity of surrounding leaves, which can guide the search
for mechanisms underlying effects of litter diversity on ecosystem processes. 相似文献
7.
Determinants of Leaf Litter Nutrient Cycling in a Tropical Rain Forest: Soil Fertility Versus Topography 总被引:1,自引:0,他引:1
We investigated the influence of landscape-level variation in soil fertility and topographic position on leaf litter nutrient
dynamics in a tropical rain forest in Costa Rica. We sampled across the three main edaphic conditions (ultisol slope, ultisol
plateau, and inceptisol) to determine the effect of soil nutrients on leaf litter nutrient concentrations while controlling
for topography, and to examine topographic effects while controlling for soil nutrients. Both leaf litter macronutrient [phosphorus
(P), nitrogen (N), sulfur (S), calcium (Ca), potassium (K), magnesium (Mg)] and micronutrient concentrations were quantified
throughout a 4-year period. Leaf litter [P], [N] and [K] varied significantly among soil types. The variation in [P], [N],
and [K] was explained by soil fertility alone. Leaf litter [S], [Ca], and [Mg] did not vary among the three soil types. Macronutrient
(P, K, Mg, S, Ca) concentrations in the leaf litter were much less variable than those of Fe and Al. Lower variability in
essential plant nutrients suggests a great deal of plant control over the amount of nutrients resorbed before senescense.
Leaf litter macronutrient concentrations varied significantly over the 4-year period, but the temporal variation did not differ
among the three edaphic types as anticipated. Hence, although the magnitude of nutrient fluxes may be controlled by local
factors such as soil fertility, temporal patterns are likely regulated by a common environmental variable such as precipitation
or temperature. 相似文献
8.
High severity wildfire events are a feature of forests globally and are likely to be more prevalent with climate change. As a disturbance process, fire has the potential to change important ecological functions, such as decomposition, through its impact on biodiversity. Despite the recognised importance of decomposition in terms of fuel loads and energy flow, little is known about the post-fire effects of fire severity on decomposition by litter-dwelling macroinvertebrate detritivores. We tested the hypotheses that: 1) increasing fire severity is associated with decreased rates of leaf litter decomposition by macroinvertebrate detritivores; and 2) the abundance and biomass of macroinvertebrate detritivores decreases with increasing fire severity, while body size increases. We used a litterbag experiment at long-unburnt, ground-burnt and crown-burnt sites (n = 7 for all treatments) to test the effect of fire severity on: a) macroinvertebrate-driven break-down of litter fuel loads; and b) the size and abundance of macroinvertebrate detritivores three years after fire. Microhabitat conditions differed among fire severity classes. Macroinvertebrate exclusion reduced litter decomposition by 34.7%. Macroinvertebrate detritivores were larger and less abundant following higher severity fires, possibly as a result of fire-induced changes in habitat structure. Opposing effects of fire severity on macroinvertebrate abundance and body size resulted in both similar detritivore biomass and, most interestingly, no differences in leaf litter decomposition under different fire severities. This suggests that the diversity of macroinvertebrates enhances functional resilience of litter decomposition to fire and that litter-breakdown is not inhibited within three years following a high severity fire in this forest type and where recolonisation sources are readily available. We found no support for the hypothesis that high severity fires reduce litter decomposition and therefore increase the likelihood of future fires. 相似文献
9.
Understanding how UV radiation interacts with prevailing climatic conditions and litter quality to determine leaf litter decomposition is fundamental for understanding soil carbon cycling pathways and ecosystem functioning in drylands. We carried out a field manipulative experiment to investigate how litter quality (labile and nitrogen-rich Retama sphaerocarpa vs. recalcitrant and nitrogen-poor Stipa tenacissima), position (on the ground vs. standing) and different UV radiation levels (UV pass vs. UV block) affect litter decomposition rates at two semiarid Mediterranean steppes with contrasting climates (continental vs. maritime) in a fully factorial experimental design. As expected, Retama litter decomposed faster than that of Stipa, and litter placed on the ground decayed faster than standing litter. However, and surprisingly, contrasting effects of UV radiation on litter decomposition were observed between the two sites. At the continental site, UV radiation increased litter decay constants by 21% on average, although the contribution of photodegradation was larger when litter was placed on the ground rather than in standing litter. At the maritime site, decay constants were 15% larger in the absence of UV radiation regardless of litter position. Significant litter type × UV exposure radiation and litter type × position interactions indicate that photodegradation contributes more to litter decomposition under less favorable moisture and substrate availability conditions for microbial decomposers. Our results emphasize the need to consider interactions between moisture availability, litter quality and UV radiation in litter decomposition models to fully understand litter decomposition impacts on soil carbon cycling and storage in drylands under climate change. 相似文献
10.
Earthworm invasion in North American temperate forest reduces forest floor mass, yet the interactions between litter composition, invasive earthworm community composition, and forest floor structure and composition are not well understood. For 2?years, we compared disappearance of leaf litter in field mesocosms in which we manipulated litter composition (monocultures of Quercus rubra, Acer saccharum, and Tilia americana litter, and an equal mixture of all three) and thereby the initial litter chemistry (C, C fractions, N, Ca) in sites with and without the major litter-feeding invasive earthworm species. The disappearance of litter mass followed the same ranking at both the sites: T. americana?>?equal mixtures?>?A. saccharum?≥?Q. rubra. However, differences in disappearance rate between the sites depended on litter composition and time. The differences in mass loss among litters of different compositions were greatest at the site invaded by the large litter-feeding earthworm, Lumbricus terrestris, and especially for T. americana and the mixture. Similarly, observed disappearance of the litter mixture was faster than predicted by an additive model at the site with L. terrestris, especially for the higher quality litter component in early summer. Initial litter calcium content was the best predictor (R 2?≥?0.90) of overall litter mass remaining each year, supporting the idea of the importance of calcium in forest floor dynamics, especially in the presence of calciferous, invasive earthworms. 相似文献
11.
东北高寒地区的黑钙土土质优良肥沃 ,适合小麦、大豆和玉米等种植。近年来 ,由于人们只重视无机化肥的使用 ,忽视了地力培育 ,大量秸秆被移出田外 ,造成土壤有机质含量降低 ,土壤板结 ,使原本高产的农田逐渐变成中低产田 ,甚至有的已成为撂荒地。因此 ,研究当前农田土壤对枯枝落叶的分解现状 ,对于认识现有耕种条件下 ,农田土壤亚系统的物质转化和能量流动具有实际意义。1 研究地区和研究方法1 .1 自然概况该研究是在黑龙江省克山师专农场进行的。地理位置位于东经 1 2 5°8′~ 1 2 6°8′,北纬 47°50′~ 48°33′。年均气温 1 .3℃ ,1… 相似文献
12.
Santonja Mathieu Rodríguez-Pérez Héctor Le Bris Nathalie Piscart Christophe 《Ecosystems》2020,23(2):400-416
Ecosystems - Plant litter decomposition is an essential ecosystem function in temperate streams. Both riparian vegetation and decomposer communities are major determinants of the decomposition... 相似文献
13.
Soil Moisture Alters the Response of Soil Organic Carbon Mineralization to Litter Addition 总被引:2,自引:0,他引:2
Increasing rainfall and longer drought conditions lead to frequent changes in soil moisture that affect soil organic carbon (SOC) mineralization. However, how soil moisture affects response of SOC mineralization to litter addition in forest ecosystems remains unexplored. We added 13C-labeled litter to subtropical forest soils with three mass water contents (L, 21%; M, 33%; H, 45%). Carbon dioxide production was monitored, and the composition of soil microbial communities was determined by phospholipid fatty acid (PLFA). When no litter was added, SOC mineralization was greater in the M-treated soil. Litter addition promoted SOC mineralization, but this promotion was altered by soil moisture and litter type. Priming effects induced by P. massoniana leaf litter in the M-moistened soil were significantly (P < 0.05) higher than those in other treatments. Litter-derived C was approximately 55% incorporated into 18:1ω9c and 16:0 PLFAs, and this proportion was not significantly affected by soil moisture. Soil moisture affected the distribution of litter-13C in i15:0, i17:0, and cy19:0 individual PLFAs. The primed C evolution was significantly related to the ratio of Gram-positive to Gram-negative bacteria. These results suggest that changes in soil moisture could affect SOC mineralization in forest ecosystems. 相似文献
14.
We measured nitrogenase activity (acetylene reduction) of asymbiotic, heterotrophic, nitrogen-fixing bacteria on leaf litter
from the tree Metrosideros polymorpha collected from six sites on the Hawaiian archipelago. At all sites M. polymorpha was the dominant tree, and its litter was the most abundant on the forest floor. The sites spanned a soil chronosequence
of 300 to 4.1 million y. We estimated potential nitrogen fixation associated with this leaf litter to be highest at the youngest
site (1.25 kg ha-1 y-1), declining to between 0.05 and 0.22 kg ha-1 y-1 at the oldest four sites on the chronosequence. To investigate how the availability of weathered elements influences N fixation
rates at different stages of soil development, we sampled M. polymorpha leaf litter from complete, factorial fertilization experiments located at the 300-y, 20,000-y and 4.1 million–y sites. At
the youngest and oldest sites, nitrogenase activity on leaf litter increased significantly in the plots fertilized with phosphorus
and “total” (all nutrients except N and P); no significant increases in nitrogenase activity were measured in leaf litter
from treatments at the middle-aged site. The results suggest that the highest rates of N fixation are sustained during the
“building” or early phase of ecosystem development when N is accumulating and inputs of geologically cycled (lithophilic)
nutrients from weathering are substantial.
Received 4 February 1999; accepted 29 March 2000. 相似文献
15.
Comparison of Fungal Activities on Wood and Leaf Litter in Unaltered and Nutrient-Enriched Headwater Streams 总被引:5,自引:0,他引:5
下载免费PDF全文

Fungi are the dominant organisms decomposing leaf litter in streams and mediating energy transfer to other trophic levels. However, less is known about their role in decomposing submerged wood. This study provides the first estimates of fungal production on wood and compares the importance of fungi in the decomposition of submerged wood versus that of leaves at the ecosystem scale. We determined fungal biomass (ergosterol) and activity associated with randomly collected small wood (<40 mm diameter) and leaves in two southern Appalachian streams (reference and nutrient enriched) over an annual cycle. Fungal production (from rates of radiolabeled acetate incorporation into ergosterol) and microbial respiration on wood (per gram of detrital C) were about an order of magnitude lower than those on leaves. Microbial activity (per gram of C) was significantly higher in the nutrient-enriched stream. Despite a standing crop of wood two to three times higher than that of leaves in both streams, fungal production on an areal basis was lower on wood than on leaves (4.3 and 15.8 g C m−2 year−1 in the reference stream; 5.5 and 33.1 g C m−2 year−1 in the enriched stream). However, since the annual input of wood was five times lower than that of leaves, the proportion of organic matter input directly assimilated by fungi was comparable for these substrates (15.4 [wood] and 11.3% [leaves] in the reference stream; 20.0 [wood] and 20.2% [leaves] in the enriched stream). Despite a significantly lower fungal activity on wood than on leaves (per gram of detrital C), fungi can be equally important in processing both leaves and wood in streams. 相似文献
16.
In coastal areas of Australia, there are extensive infestations of the environmental weed Chrysanthemoides monilifera ssp. rotundata (bitou bush). This study looked at the impact of long-term infestations on the abundance and assemblage composition of leaf
litter invertebrates. Assemblages were compared in weed infested and native shrublands along the New South Wales coastline
over 12 months. The total abundance was not significantly reduced in the weedy habitat but the abundance of mites, thrips,
spiders, ants, and centipedes was reduced at many sites. The invertebrate assemblages also differed between habitats, with
the C. monilifera supporting a lower diversity of beetles. However, the millipedes, amphipods, earthworms, pseudoscorpions and isopods appeared
to respond positively to the invasion, occurring in higher abundance and detected more frequently in the weedy areas. This
has been partially attributed to a change in microclimate within the C. monilifera infestations. It is generally moister and darker, which these invertebrates tend to prefer. Secondly, C. monilifera produces less leaf litter of higher quality, and possibly higher palatability than the native sclerophyllous vegetation,
which may encourage species that consume litter. 相似文献
17.
Understanding the response mechanisms of litter respiration to soil moisture in water-limited semi-arid regions is of vital importance to better understanding the interplay between ecological processes and the local carbon cycle. In situ soil respiration was monitored during 2010–2012 under various conditions (normal litter, no litter, and double litter treatments) in a 30-year-old artificial black locust plantation (Robinia pseudoacacia L.) on the Loess Plateau. Litter respiration with normal and double litter treatments exhibited similar seasonal variation, with the maximum value obtained in summer (0.57 and 1.51 μmol m−2 s−1 under normal and double litter conditions, respectively) and the minimum in spring (0.27 and 0.69 μmol m−2 s−1 under normal and double litter conditions, respectively). On average, annual cumulative litter respiration was 115 and 300 g C m−2 y−1 under normal and double litter conditions, respectively. Using a soil temperature of 17°C as the critical point, the relationship between litter respiration and soil moisture was found to follow quadratic functions well, whereas the determination coefficient was much greater at high soil temperature than at low soil temperature (33–35% vs. 22–24%). Litter respiration was significantly higher in 2010 and 2012 than in 2011 under both normal litter (132–165 g C m−2 y−1 vs. 48 g C m−2 y−1) and double litter (389–418 g C m−2 y−1 vs. 93 g C m−2 y−1) conditions. Such significant interannual variations were largely ascribed to the differences in summer rainfall. Our study demonstrates that, apart from soil temperature, moisture also has significant influence on litter respiration in semi-arid regions. 相似文献
18.
S. R. Ganihar 《Restoration Ecology》2003,11(4):475-482
Abstract The effects of the earthworm Pontoscolex corethrurus (Muller) on the rate of mineralization of cattle dung‐amended iron (Fe2 + ) ore mine wastes and its preference for partially decomposed leaf litter with contrasting chemical composition were studied in pot trials. The growth and survival rates of earthworms showed significant positive correlations with percent of organic matter. During 96 days of exposure, the earthworms significantly increased exchangeable Ca2 + , Mg2 + , PO43 ? and NH4‐N. Iron ore mine wastes amended with 5–10% organic matter supported earthworm fauna better than mine wastes amended with 0–3% organic matter. The leaf litter preference shown by the earthworm was, in descending order, Phyllanthus reticulatus, Tamarindus indica, Anacardium occidentale, Casuarina equisetifolia, Acacia auriculiformis, and Eucalyptus camaldulensis. A significant positive correlation was observed between the survival and growth rates of earthworms and the nutrient contents of partially decomposed leaf litter. The first three plant species were significantly richer in nutrients, mainly organic carbon, calcium, phosphorus, and nitrogen, than the other two plant species. Acacia auriculiformis and E. camaldulensis litter were preferred less because of their high lignin and polyphenolic compounds, despite being rich in other macronutrients like nitrogen and phosphorus. It is concluded that the introduction of P. corethrurus to cattle dung‐amended (5–10%) iron ore mine wastes or revegetation of the sites with P. reticulatus, T. indica, and A. occidentale plant species should be attempted before earthworm introduction. The litter from these species acts as a source of food for earthworms, thereby hastening the process of restoration of abandoned iron ore mines of Goa, India. 相似文献
19.
Bonnie G. Waring 《Ecosystems》2012,15(6):999-1009
Although tropical forests occupy a small fraction of the earth’s total land area, they play a disproportionately large role in regulating the global carbon cycle. Yet controls on both primary productivity and decomposition in tropical forests are not well-studied in comparison with temperate forests and grasslands, despite their extreme biogeochemical heterogeneity. To evaluate the relative importance of climate and foliar chemical variables in driving decomposition in tropical forests, I performed a meta-analysis of reported leaf litter decay rates throughout tropical forest ecosystems. Using a model selection procedure based on Akaike’s Information Criterion, I found that temperature and precipitation played little direct role in regulating decomposition rates, except in montane forests where cool temperatures slowed decay. Foliar concentrations of calcium, magnesium, nitrogen, phosphorus, and potassium were important predictors of mass loss rates, although each of these factors explained a very small amount of variance when considered in isolation. The large amount of unexplained variation in decomposition rates observed both within and across tropical forest sites may be due to other factors not explored here, such as soil biota or complex plant secondary chemistry. Carbon cycling in tropical forests seems to be modulated by the availability of multiple nutrients, underscoring the need for additional manipulative experiments to explore patterns of belowground nutrient limitation across the biome. Because models of decomposition developed in temperate ecosystems do not appear to be generalizable to wet tropical forests, new biogeochemical paradigms should be developed to accommodate their unique combination of climatic, edaphic, and biotic factors. 相似文献
20.
凋落物对土壤酸化的缓冲及其对根系生长的影响 总被引:8,自引:0,他引:8
凋落物层是森林生态系统中一个十分活跃的界面,一方面环境因素影响凋落物的积累和分解,另一方面凋落物的动态反过来又影响到系统内的水热收支平衡、土壤的理化特性以至森林生产力。值得注意的是,在高度工业化的现代社会,大气污染作为一种新生的环境因子不同程度地作用于森林生态系统,凋落物层则是大气污染物(如酸雨)作用于森林土壤亚系 相似文献