共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Niall Kenneth George Hucks Andrew Kocab Annie McCollom 《Cell cycle (Georgetown, Tex.)》2014,13(6):1006-1014
Copper is an essential trace element that plays key roles in many metabolic processes. Homeostatic regulation of intracellular copper is normally tightly controlled, but deregulated copper levels are found in numerous metabolic and neurodegenerative diseases, as well as in a range of neoplasms. There are conflicting reports regarding the exact role of copper in the regulation of NFκB-responsive genes, specifically whether copper leads to increased activation of the NFκB pathways, or downregulation. Here we show that increased intracellular levels of copper, using the ionophore clioquinol, leads to a potent inhibition of NFκB pathways, induced by multiple distinct stimuli. Addition of copper to cells inhibits ubiquitin-mediated degradation of IκBα by preventing its phoshorylation by the upstream IKK complex. Intriguingly, copper-dependent inhibition of NFκB can be reversed by the addition of the reducing agent, N-acetylcysteine (NAC). These results suggest that the oxidative properties of excess copper prevent NFκB activation by blocking IκBα destruction, and that NFκB activity should be assessed in diseases associated with copper excess. 相似文献
3.
4.
Glutathione (GSH) is an intracellular antioxidant synthesized from glutamate, cysteine and glycine. The human erythrocyte (red blood cell, RBC) requires a continuous supply of glutamate to prevent the limitation of GSH synthesis in the presence of sufficient cysteine, but the RBC membrane is almost impermeable to glutamate. As optimal GSH synthesis is important in diseases associated with oxidative stress, we compared the rate of synthesis using two potential glutamate substrates, α-ketoglutarate and glutamine. Both substrates traverse the RBC membrane rapidly relative to many other metabolites. In whole RBCs partially depleted of intracellular GSH and glutamate, 10 mm extracellular α-ketoglutarate, but not 10 mm glutamine, significantly increased the rate of GSH synthesis (0.85 ± 0.09 and 0.61 ± 0.18 μmol·(L RBC)(-1) ·min(-1), respectively) compared with 0.52 ± 0.09 μmol·(L RBC)(-1) ·min(-1) for RBCs without an external glutamate source. Mathematical modelling of the situation with 0.8 mm extracellular glutamine returned a rate of glutamate production of 0.36 μmol·(L RBC)(-1) ·min(-1), while the initial rate for 0.8 mM α-ketoglutarate was 0.97 μmol·(L RBC)(-1) ·min(-1). However, with normal plasma concentrations, the calculated rate of GSH synthesis was higher with glutamine than with α-ketoglutarate (0.31 and 0.25?μmol·(L RBC)(-1) ·min(-1), respectively), due to the substantially higher plasma concentration of glutamine. Thus, a potential protocol to maximize the rate of GSH synthesis would be to administer a cysteine precursor plus a source of α-ketoglutarate and/or glutamine. 相似文献
5.
《中国病毒学》2016,(6)
IκB kinase ε(IKKε) is a non-canonical IκB kinase that is extensively studied in the context of innate immune response. Recently, significant progress has been made in understanding the role of IKKεin interferon(IFN) signaling. In addition to its roles in innate immunity, recent studies also demonstrate that IKKε is a key regulator of the adaptive immune response. Specifically, IKKεfunctions as a negative feedback kinase to curtail CD8 T cell response, implying that it can be a potential therapeutic target to boost antiviral and antitumor T cell immunity. In this review, we highlight the roles of IKKε in regulating IFN signaling and T cell immunity, and discuss a few imminent questions that remain to be answered. 相似文献
6.
7.
Classical Hodgkin lymphoma (cHL) is now recognized as a B-cell-derived lymphoma which is characterized by only about 1% malignant pathognomonic Hodgkin and Reed-Sternberg (HRS) cells and an abundant infiltrate of reactive bystander cells. HRS cells are unique with respect to their lost B-cell-specific gene expression pattern and recurrent genetic lesions. Aberrant activity of Notch signaling, a highly conserved developmental pathway, acts as a negative regulator of the B cell program in HRS cells and thereby contributes to their reprogramming. Another striking feature and the major pathogenetic mechanism in HRS cells is constitutive NF-κB activation. A number of aberrations that contribute to canonical NF-κB activity in HRS cells have been described such as genetic lesions, deregulated receptor signaling and Epstein-Barr virus (EBV) infection. The importance of Notch and NF-κB signaling for cHL pathogenesis, their potential cross-talk and implications for future therapeutic applications are being discussed. 相似文献
8.
9.
Natarajan Aravindan Karthigayan Shanmugasundaram Mohan Natarajan 《Molecular and cellular biochemistry》2009,327(1-2):29-37
Conceptual approaches of heat-induced cytotoxic effects against tumor cells must address factors affecting therapeutic index, i.e., the relative toxicity for neoplastic versus normal tissues. Accordingly, we investigated the effect of hyperthermia treatment (HT) on the induction of DNA fragmentation, apoptosis, cell-cycle distribution, NFκB mRNA expression, DNA-binding activity, and phosphorylation of IκBα in the normal human Mono Mac 6 (MM6) cells. For HT, cells were exposed to 43°C. FACS analysis showed a 48.5% increase in apoptosis, increased S-phase fraction, and reduced G2 phase fraction after 43°C treatments. EMSA analysis showed a dose-dependent inhibition of NFκB DNA-binding activity after HT. This HT-mediated inhibition of NFκB was persistent even after 48 h. Immunoblotting analysis revealed dose-dependent inhibition of IκBα phosphorylation. Similarly, RPA analysis showed that HT persistently inhibits NFκB mRNA. These results demonstrate that apoptosis upon HT exposure of MM6 cells is regulated by IκBα phosphorylation mediated suppression of NFκB. 相似文献
10.
11.
12.
13.
Nasser Ghaly Yousif Fadhil G. Al-amran Najah Hadi Jillen Lee Jonthan Adrienne 《Cytokine》2013,61(1):223-227
BackgroundEsophageal cancer is the seventh leading cause of cancer death in males in USA, and there is a strong link has been demonstrated between inflammation and esophageal cancer, interleukin (IL)-32 is a recently described pro-inflammatory cytokine characterized by the induction of nuclear factor NF-κB activation, the p38MAPK also plays an important role in key cellular processes related to inflammation and cancer. We investigated whether the IL-32 expression may be involved in esophageal carcinogenesis through modulates the activity of NF-κB and p-p38 MAPK.MethodMalignant esophageal tissue and blood samples were obtained from 65 operated untreated patients, normal samples was obtained from 35 patients operated for other reasons as control. IL-32 expression visualized by immunohistochemistry, Real time RT–PCR for IL-32 mRNA expression, NF-κB phosphorylation and phosphorylated p38mapk were analyzed by immunoblotting, ELISA for further detection IL-32 and cytokines (TNF-α, IL-1β, IL-6 and IL-8) concentration in the patient’s sera.ResultsIL-32 expression was increased in immunohistochemical staining for malignant esophageal tissue and it’s correlated with the relative expression level of IL-32 mRNA P = 0.007, the P-NF-κB level elevated in tumor tissue compared with control and no difference in the total NF-κB level P = 0.003 while the IL-32 up-regulated the P-pNF-κB in the esophageal tumor P = 0.005. There is increase in p-p38MAPK activation underlying IL-32 expression in tumor P = 0.004, but no change in total p38 MAPK in malignant esophagus. The plasma level of IL-32 expression was increased in malignant esophageal patients P = 0.01, with increased in the levels of the cytokines TNF-α, IL-6, and IL-1β P<0.05.ConclusionsUnderstanding the pathway of IL-32 expression to stimulate the secretion cytokines via the activation of NF-κB and up-regulation of p-p38MAPK may or may not prove to be a therapeutic target, or a biomarker, and future studies will finally answer this hypothesis generated. 相似文献
14.
15.
16.
17.
18.
19.
20.
《Cell cycle (Georgetown, Tex.)》2013,12(1):194-199
It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mouse embryonic fibroblasts (MEFs), distinct autophagic triggers, including starvation, mTOR inhibition with rapamycin and p53 inhibition with cyclic pifithrin α lead to the activation of IKK, followed by the phosphorylation-dependent degradation of IκBα and nuclear translocation of NFκB. Remarkably, the NFκB signaling pathway was blocked in MEFs lacking either the essential autophagy genes Atg5 or Atg7. In addition, we found that tumor necrosis factor α (TNFα)-induced NFκB nuclear translocation is abolished in both Atg5- and Atg7-deficient MEFs. Similarly, the depletion of essential autophagy modulators, including ATG5, ATG7, Beclin 1 and VPS34, by RNA interference inhibited TNFα-driven NFκB activation in two human cancer cell lines. In conclusion, it appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways. 相似文献