共查询到20条相似文献,搜索用时 15 毫秒
1.
Malcolm B. Wilkins 《Planta》1991,185(3):425-431
The role of the epidermis in the generation of the endogenous circadian rhythm of CO2 exchange in leaves of Bryophyllum fedtschenkoi has been examined. At 25° C the rhythm of CO2 output exhibited by whole leaves kept in continuous darkness and an initially CO2-free air stream also occurs in isolated pieces of mesophyll. The sensitivity to light of the rhythms in whole leaves and in isolated mesophyll appears to be identical. At 15° C, however, no rhythm is observed in isolated mesophyll tissue, despite there being a conspicuous rhythm in intact leaves. The rhythm of net CO2 assimilation in whole leaves kept in continuous light and a stream of normal air at either 25° C or at 15° C is abolished by removal of the epidermis, although at 15° C and under the higher of the two light levels used, there is an indication that rhythmicity may begin to reappear after the third day of the experiment. Thus, only under certain environmental conditions is the rhythm of CO2 exchange in Bryophyllum leaves independent of the epidermis. The results indicate that the rhythm of carbon dioxide fixation in continuous darkness and CO2-free air is generated primarily in the mesophyll cells, whereas the rhythm in continuous light and normal air is generated in the stomatal guard cells or in an interaction of these cells with the mesophyll cells.Abbreviation PEPCase
phosphoenolpyruvate carboxylase 相似文献
2.
The circadian rhythm of CO2 assimilation in detached leaves of Bryophyllum fedtschenkoi at 15° C in normal air and continuous illumination is inhibited both by exposure to darkness, and to an atmosphere enriched with 5% CO2. During such exposures substantial fixation of CO2 takes place, and the malate concentration in the cell sap increases from about 20 mM to a constant value of 40–50 mM after 16 h. On transferring the darkened leaves to light, and those exposed to 5% CO2 to normal air, a circadian rhythm of CO2 assimilation begins again. The phase of this rhythm is determined by the time the transfer is made since the first peak occurs about 24 h afterwards. This finding indicates that the circadian oscillator is driven to, and held at, an identical, fixed phase point in its cycle after 16 h exposure to darkness or to 5% CO2, and it is from this phase point that oscillation begins after the inhibiting condition is removed. This fixed phase point is characterised by the leaves having acquired a high malate content. The rhythm therefore begins with a period of malate decarboxylation which lasts for about 8 h, during which time the malate content of the leaf cells must be reduced to a value that allows phosphoenolpyruvate carboxylase to become active. Inhibition of the rhythm in darkness, and on exposure to 5% CO2 in continuous illumination, appears to be due to the presence of a high concentration of CO2 within the leaf inhibiting malic enzyme which leads to the accumulation of high concentrations of malate in the leaf cells. The malate then allosterically inhibits phosphoenolpyruvate carboxylase upon which the rhythm depends. The results give support to the view that malate synthesis and breakdown form an integral part of the circadian oscillator in this tissue.Abbreviations
B.
Bryophyllum
- PEPCase
phosphoenolpyruvate carboxylase 相似文献
3.
Detached leaves of Bryophyllum fedtschenkoi Hamet et Perrier kept in normal air show a single period of net CO2 fixation on transfer to constant darkness at temperatures in the range 0–25 °C. The duration of this initial fixation period is largely independent of temperature in the range 5–20 °C, but lengthens very markedly at temperatures below 4 °C, and is reduced at temperatures above 25 °C. The onset of net fixation of CO2 on transfer of leaves to constant darkness is immediate at low temperatures, but is delayed as the temperature is increased. The ambient temperature also determines whether or not a circadian rhythm of CO2 exchange occurs. The rhythm begins to appear at about 20 °C, is most evident at 30 °C and becomes less distinct at 35 °C. The occurrence of a distinct circadian rhythm in CO2 output at 30° C in the absence of a detectable rhythm in PEPCase kinase activity shows that the kinase rhythm is not a mandatory requirement for the rhythm of PEPCase activity. However, when it occurs, the kinase rhythm undoubtedly amplifies the PEPCase rhythm.Abbreviation PEPCase
phosphoenolpyruvate carboxylase
We thank the Agricultural and Food Research Council for financial support for this work. 相似文献
4.
Leaves ofBryophyllum fedtschenkoi show a persistent circadian rhythm in CO2 assimilation when kept in continuous illumination and normal air at 15°C. The induction of phase shifts in this rhythm by
exposing the leaves for four hours at different times in the circadian cycle to 40° C, 2° C, darkness and 5% CO2 have been investigated. Exposure to high temperature has no effect on the phase at the apex of the peak but is effective
at all other times in the cycle, whereas exposure to low temperature, darkness or 5% CO2 is without effect between the peaks and induces a phase shift at all other times. The next peak of the rhythm occurs 17 h
after a 40° C treatment and 7–10 h after a 2° C, dark or 5% CO2 treatment regardless of their position in the cycle. When these treatments are given at times in the cycle when they induce
maximum phase shifts, they cause no change in the gross malate status of the leaf. The gross malate content of the leaf in
continuous light and normal air at 15% shows a heavily damped circadian oscillation which virtually disappears by the time
of the third cycle, but the CO2 assimilation rhythm persists for many days. The generation of the rhythm, and the control of its phase by environmental factors
are discussed in terms of mechanisms that involve the synthesis and metabolism of malate in specific localised pools in the
cytoplasm of the leaf cells. 相似文献
5.
Malcolm B. Wilkins 《Planta》1984,161(4):381-384
Leaves of Bryophyllum fedtschenkoi Hamet et Perrier maintained in a stream of normal air and at 15° C exhibit a circadian rhythm of CO2 uptake in continuous light but not in continuous darkness. The rhythm is unusual in that it persists for at least 10 d, and has a short period of approximately 18 h. The mechanism by which this rhythm is generated is discussed.Abbreviation PEPCase
phosphoenolpyruvate carboxylase 相似文献
6.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31; PEPCase) from Bryophyllum fedtschenkoi leaves has previously been shown to exist in two forms in vivo. During the night the enzyme is phosphorylated and relatively insensitive to feedback inhibition by malate whereas during the day the enzyme is dephosphorylated and more sensitive to inhibition by malate. These properties of PEPCase have now been investigated in leaves maintained under constant conditions of temperature and lighting. When leaves were maintained in continuous darkness and CO2-free air at 15°C, PEPCase exhibited a persistent circadian rhythm of interconversion between the two forms. There was a good correlation between periods during which the leaves were fixing respiratory CO2 and periods during which PEPCase was in the form normally observed at night. When leaves were maintained in continuous light and normal air at 15°C, starting at the end of a night or the end of a day, a circadian rhythm of net uptake of CO2 was observed. Only when these constant conditions were applied at the end of a day was a circadian rhythm of interconversions between the two forms of PEPCase observed and the rhythms of enzyme interconversion and CO2 uptake did not correlate in phase or period.Abbreviations CAM
Crassulacean acid metabolism
- FW
fresh weight
- PEPCase
phosphoenolpyruvate carboxylase
- RuBPCase
ribulose-1,5-bisphosphate carboxylase
To whom correspondence should be addressed. 相似文献
7.
The rhythm of carbon dioxide output in Bryophyllum leaves was entrained on exposure to 0.25 h of white light every 24 h. Entrainment also occurred on similar exposure to monochromatic radiation in spectral bands centred at 660 nm and, to a lesser extent, at 730 nm, but a band centred at 450 nm was without effect. A skeleton irradiation programme comprising two 0.25-h exposures to white light per 24 h also entrained the rhythm when the intervening dark periods were either 7.5 h and 16 h, or 10.5 h and 13 h. The rhythm disappeared when the two exposures were separated by 11.5-h and 12-h dark periods. Regular 0.25-h exposures to red light separated by 11.75-h periods of darkness also resulted in loss of the rhythm. Red/far-red reversibility was observed in irradiation schedules having either one or two exposures to red light daily. In the latter case, far-red reversal of the effects of one of the exposures to red light resulted in entrainment of the rhythm by the other, instead of abolition of the rhythm. The occurrence of distinct red/far-red reversibility suggests strongly that phytochrome is the pigment involved in entrainment of this rhythm by cycles of light and darkness.Abbreviation LD
light-dark rhythm 相似文献
8.
The circadian rhythm of CO2 output in darkened leaves of Bryophyllum fedtschenkoi R. Hamet and Perrier can be inhibited by cycloheximide (10-6 mol) and 2,4-dinitrophenol (10-5 mol) applied via the transpiration stream. After having been suppressed by 10-6 M cycloheximide, the rhythm can be reinitiated with a 12-h exposure to light. Experiments using 14CO2 show that cycloheximide abolishes the rhythm by inhibiting the dark fixation of CO2. Cycloheximide inhibits malate accumulation and acidification of the leaves, but does not affect the amount of the CO2-fixing enzyme phosphoenol-pyruvate carboxylase (PEP-C, EC 4.1.1.31) which can be extracted from the leaves during the 45 h of the experiment. Cycloheximide has no direct effect on the activity of the enzyme as measured in the assay. PEP-C from desalted leaf extracts was inhibited by L-malate (Ki=0.4 mmol). The most likely explanation for the inhibitory effect of cycloheximide and dinitrophenol is that they cause changes in tonoplast properties which result in a redistribution of malate from the vacuole to the cytoplasm. An increase in malate concentration in the cytoplasm will lead to inhibition of PEP-carboxylase, and hence the suppression of the rhythm of CO2 output.Abbreviations CAM
crassulacean acid metabolism
- PEP-C
phosphoenol-pyruvate carboxylase
- MDH
malate dehydrogenase
- CHM
cycloheximide
- DNP
2,4-dinitrophenol
- LD
light-dark-cycle
- DD
continuous darkness 相似文献
9.
The phosphorylation state and the malate sensitivity of phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) in Bryophyllum fedtschenkoi Hamet et Perrier are altered by changes in the ambient temperature. These effects, in turn alter the in-vivo activity of the enzyme. Low temperature (3 °C or less), stabilizes the phosphorylated form of the enzyme, while high temperature (30 °C) promotes its dephosphorylation. The catalytic activity of the phosphorylated and dephosphorylated forms of PEPCase increases with temperature, but the apparent K
i values for malate of both forms of the enzyme decrease. Results of experiments with detached leaves maintained in darkness in normal air indicate that the changes in malate sensitivity and phosphorylation state of PEPCase with temperature are of physiological significance. When the phosphorylated form of PEPCase is stabilized by reducing the temperature of leaves 9 h after transfer to constant darkness at 15 °C, a prolonged period of CO2 fixation follows. When leaves are maintained in constant darkness at 15 °C until CO2 output reaches a low steady-state level and the PEPCase is dephosphorylated, reducing the temperature to 3 °C results in a further period of CO2 fixation even though the phosphorylation state of PEPCase does not change.Abbreviations CAM
Crassulacean acid metabolism
- PEP
phosphoenolpyruvate
- PEPCase
phosphoenolpyruvate carboxylase
We thank the Agricultural and Food Research Council for financial support for this work. 相似文献
10.
An inactivated nitrate reductase (EC 1.6.6.1) formed in vivo by the green alga Chlorella fusca Shihira and Kraus is shown to be a cyanide complex. The partially purified inactive enzyme releases 0.048 nmol of HCN per unit of enzyme activated. This compares with 0.066 nmol of HCN liberated in similar previous measurements with the inactivated enzyme from Chlorella vulgaris. The nitrate reductase from C. fusca has been purified to a level of 67 mol nitrate reduced per min per mg enzyme. It contains a cytochrome b557, at a level 1.9-fold higher per unit of active enzyme, than the nitrate reductase from C. vulgaris.Abbreviations FAD
flavin-adenine dinucleotide
- NADH
nicotineamide-adenine-dinucleotide (reduced) 相似文献
11.
Arnon Rikin 《Planta》1991,185(3):407-414
The relationship between the degree of chilling resistance and phase shifting caused by low-temperature pulses was examined in two circadian rhythms in cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 1212 h at 33° C. The seedlings showed a circadian rhythm of chilling resistance and of cotyledon movement. A pulse of 19° C for 12 h during the chilling-sensitive phase (light period) caused a phase delay of 6 h, while a similar temperature pulse during the chilling-resistant phase (dark period) did not cause any phase shift. Exposure to 19° C, 85% RH (relative humidity) for 12 h during the dark period induced chilling resistance in the following otherwise chilling-sensitive light period. In this light period a 12-h 19° C pulse did not cause a phase shift of chilling resistance. Pulses of low temperatures (5–19° C) were more effective in causing phase delays in the rhythm of cotyledon movement when given during the chilling-sensitive phase than when given during the chilling-resistant phase. A 12-h pulse of 5° C, 100% RH during the light period caused a phase delay of cotyledon movement of 12 h. However, when that pulse had been preceded by a chill-acclimating exposure to 19° C, 85% RH for 12 h during the dark period the phase delay was shortened to 6 h. The correlation between higher degree of chilling resistance and the prevention or shortening of the phase delay caused by low temperatures indicates that the mechanism that increases chilling resistance directly or indirectly confers greater ability for prevention of phase shifting by low temperatures in circadian rhythms.Abbreviations CT
circadian time
- LDC
light-dark cycle of 24 h
- RH
relative humidity 相似文献
12.
Using an open gas-exchange system, apparent photosynthesis, true photosynthesis (TPS), photorespiration (PR) and dark respiration of sunflower (Helianthus annuus L.) leaves were determined at three temperatures and between 50 and 400 l/l external CO2. The ratio of PR/TPS and the solubility ratio of O2/CO2 in the intercellular spaces both decreased with increasing CO2. The rate of PR was not affected by the CO2 concentration in the leaves and was independent of the solubility ratio of oxygen and CO2 in the leaf cell. At photosynthesis-limiting concentrations of CO2, the ratio of PR/TPS significantly increased from 18 to 30°C and the rate of PR increased from 4.3 mg CO2 dm-2 h-1 at 18°C to 8.6 mg CO2 dm-2 h-1 at 30°C. The specific activity of photorespired CO2 was CO2-dependent but temperature-independent, and the carbon traversing the glycolate pathway appeared to be derived both from recently fixed assimilate and from older reserve materials. It is concluded that PR as a percentage of TPS is affected by the concentrations of O2 and CO2 around the photosynthesizing cells, but the rate of PR may also be controlled by other factors.Abbreviations APS
apparent photosynthesis (net CO2 uptake)
- PR
photorespiration (CO2 evolution in light)
- RuBP
ribulose-1,5-bisphosphate
- TPS
true photosynthesis (true CO2 uptake) 相似文献
13.
The microelectrode technique was used to follow oscillations in membrane potential in mesophyll cells of spinach (Spinacia oleracea L.) during exposure do different photoperiodic conditions. Both high-frequency oscillations and circadian variations were observed. The circadian rhythm was imposed on the period of high-frequency oscillation during short days as well as in continuous light: The free-running period was 25.2 h. The average period of high-frequency oscillation increased from 7.64 min in the dark to 19.95 min in the light within several minutes after dark to light transition. This period length coincides with the established period length for oscillations in the redox potential in the chloroplast suspensions of spinach.Abbreviations CL
continuous light
- SD
short day
- MP
membrane potential 相似文献
14.
F. Roces 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1995,177(5):637-643
Along a thermal gradient and under a LD 1212 h cycle, nurse workers of the ant Camponotus mus select for the brood two different temperatures daily: 30.8°C at the middle of the light period (circadian phase = 90°), and 27.5°C 8 h later, during the dark period (CP = 210°). Brood-carrying activity proved to be self-sustained, running its two daily bursts free with a similar period of 23.5 h, under both LL and DD. The LD alternation acted as a strong Zeitgeber. A phase-delay of the LD 1212 h cycle reset the overt rhythm at once, being both daily events locked-on to the delayed light: dark transition. However, changes in expression, non-occurrence, or even splitting of the two daily brood-carrying events during resetting depended on the phase of the delayed DL transition. By comparing the occurrence of activity with predictions based on a threshold curve of thermal sensitivity, results indicated that an immediate resetting of the involved pacemaker actually takes place. Nurse workers do not directly control the total time spent by the brood at the selected temperature. Instead, the endogenously-driven thermal sensitivity triggers their thermal-searching behavior at two critical times of the day, when environmental temperature is expected to reach its maximum and minimum. 相似文献
15.
This article reports marked modulation of the activity and regulatory properties of phosphoenolpyruvate carboxylase (PEPC) by temperature and light in leaf discs as well as leaves of Amaranthus hypochondriacus. The activity of PEPC increased by 1.7-fold at 45 degrees C over 25 degrees C. Warm temperature also stimulated the photoactivation of PEPC. The activation by light of PEPC was 1.9-fold at 25 degrees C and increased to 2.2-fold at 45 degrees C. The sensitivity of PEPC to its inhibitor malate was less and the activation by glucose-6-phosphate (G-6-P) or inorganic phosphate (Pi) was more at 45 degrees C than that at 25 degrees C. These effects of temperature were quite pronounced in light. Similar responses were observed when detached leaves were exposed to varying ambient temperature (dry heat). The activity of PEPC increased by 1.6-fold at 45 degrees C over 25 degrees C in the dark. The activation of PEPC by light was 2.1-fold at 25 degrees C and increased to 2.6-fold at 45 degrees C. Inhibition by malate was less and activation by G-6-P or Pi was more at 45 degrees C than that at 25 degrees C. Thus, there was a marked modulation of not only the activity but also the regulatory properties of the enzyme by temperature and light, independently as well as cooperatively with each other. Further experiments suggested that PEPC was able to memorize to a significant extent the changes induced by warm temperature and that these changes were complemented by subsequent illumination. These effects were not due to changes in PEPC protein levels. We conclude that temperature and light can modulate PEPC activity and regulatory properties not only individually but also in a significantly cooperative manner with each other. As significant increases in temperature are common during daytime in tropical or subtropical conditions, we suggest that the synergistic effects of temperature and light are quite relevant in optimizing the activity of PEPC in leaves of C(4) plants. 相似文献
16.
The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.Abbreviations CAM
Crassulacean acid metabolism
- PAR
photosynthetically active radiation
- PEP
phosphoenolpyruvate
- RrBP
ribulose-1,5-bisphosphate
- TCA
tricarboxylic acid cycle 相似文献
17.
Spinach chloroplasts capable of high rates of CO2 fixation have been isolated in glycinebetaine as an alternative osmoticum to sorbitol and found to be very stable. Proline was a less satisfactory alternatine. The possible significance of the use of glycinebetaine is discussed as this solute may be the physiological cytoplasmic osmoticum in members of the Chenopodiaceae. 相似文献
18.
Summary 1) When a thermal gradient (20–40° C) was established along a laboratory nest, Camponotus mus nurse workers showed a photoperiodic circadian rhythm of temperature preferences for brood rearing. Two different temperatures were daily selected to translocate the brood, i.e. 30.8° C selected at the middle of the photophase, and 27.5° C selected during the scotophase, 8 h later. 2) The daily temperature response of nurse workers consisted of paired high and low-temperature translocations, with a 8 hs-interval in between: high-temperature translocation was shown to be entrained by the photophase length, whereas low-temperature translocation was shown to be dependent on the precedent one. 3) Prey deprivation to the colony modified the brood transport behaviors resulting in translocations of only cocoons and large (ripe) larvae, stages in which the pupation processes are triggered. Small larvae and eggs remained located at 27.5° C. 4) Evaluation of pupa developmental time as well as percentage of pupa mortality at different temperature regimes allowed to construct an efficiency index relating pupa survival and cocoon developmental time. In the range of temperatures selected by nurses, the index reached its maximal values. 5) The ecological significance of these results is discussed. 相似文献
19.
Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light 总被引:1,自引:0,他引:1
Responses of the rate of net CO2 assimilation (A) to the intercellular partial pressure of CO2 (p
i
) were measured on intact spinach (Spinacia oleracea L.) leaves at different irradiances. These responses were analysed to find the value of p
i
at which the rate of photosynthetic CO2 uptake equalled that of photorespiratory CO2 evolution. At this CO2 partial pressure (denoted ), net rate of CO2 assimilation was negative, indicating that there was non-photorespiratory CO2 evolution in the light. Hence was lower than the CO2 compensation point, . Estimates of were obtained at leaf temperatures from 15 to 30°C, and the CO2/O2 specificity of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (E.C. 4.1.1.39) was calculated from these data, taking into account changes in CO2 and O2 solubilities with temperature. The CO2/O2 specificity decreased with increasing temperature. Therefore we concluded that temperature effects on the ratio of photorespiration to photosynthesis were not solely the consequence of differential effects of temperature on the solubilities of CO2 and O2. Our estimates of the CO2/O2 specificity of RuBP carboxylase/oxygenase are compared with in-vitro measurements by other authors. The rate of nonphotorespiratory CO2 evolution in the light (R
d
) was obtained from the value of A at . At this low CO2 partial pressure, R
d
was always less than the rate of CO2 evolution in darkness and appeared to decrease with increasing irradiance. The decline was most marked up to about 100 mol quanta m-2 s-1 and less marked at higher irradiances. At one particular irradiance, however, R
d
as a proportion of the rate of CO2 evolution in darkness was similar in different leaves and this proportion was unaffected by leaf temperature or by [O2] (ambient and greater). After conditions of high [CO2] and high irradiance for several hours, the rate of CO2 evolution in darkness increased and R
d
also increased.Abbreviations and symbols A
rate of net CO2-assimilation
-
CO2 compensation point
-
CO2 compensation point in the absence of R
d
-
p
i
intercellular partial pressure of CO2
-
R
d
(day respiration)
rate of non-photorespiratory CO2 evolution in the light
-
R
n
(night respiration)
rate of CO2 evolution in darkness
- RuBP
ribulose-1,5-bisphosphate
- Rubisco
RuBP carboxylase/oxygenase 相似文献
20.
Over a 24-h light-dark cycle, the level of mRNA coding for nitrate reductase (NR; EC 1.6.6.1) in the leaves of nitrate-fed Nicotiana tabacum L. plants increased throughout the night and then decreased until it was undetectable during the day. The amount of NR protein and NR activity were two-fold higher during the day than at night. When plants were transferred to continuous light conditions for 32 h, similar variations in NR gene expression, as judged by the above three parameters, still took place in leaf tissues. On the other hand, when plants were transferred to continuous dark conditions for 32 h, the NR-mRNA level continued to display the rhythmic fluctuations, while the amount of NR protein and NR activity decreased constantly, becoming very low, and showed no rhythmic variations. After 56 h of continuous darkness, the levels of NR mRNA, protein and activity in leaves all became negligible, and light reinduced them rapidly. These results indicate the circadian rhythmicity and light dependence of NR expression. 相似文献