首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P3) signaling and SphK1 in activated rat astrocytes has not been defined.

Methodology/Principal Findings

Using immunohistochemistry we observed the upregulation of S1P3 and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P3 and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P3 agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P3 upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P3 signaling compared to S1P1 signaling was demonstrated by the use of selective S1P3 or S1P1 agonists.

Conclusion/Significance

In summary, our data demonstrate that the SphK1/S1P3 signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1.  相似文献   

2.
Sphingosine 1-phosphate (S1P), a bioactive sphingolipid involved in diverse biological processes, is generated by sphingosine kinase (SphK) and acts via intracellular and/or extracellular mechanisms. We used biochemical, pharmacological, and physiological approaches to investigate in rat myometrium the contractile effect of exogenous S1P and the possible contribution of SphK in endothelin-1 (ET-1)-mediated contraction. S1P stimulated uterine contractility (EC50 = 1 µM and maximal response = 5 µM) by a pertussis toxin-insensitive and a phospholipse C (PLC)-independent pathway. Phosphorylated FTY720, which interacts with all S1P receptors, except S1P2 receptors, failed to mimic S1P contractile response, indicating that the effects of S1P involved S1P2 receptors that are expressed in myometrium. Contraction mediated by S1P and ET-1 required extracellular calcium and Rho kinase activation. Inhibition of SphK reduced ET-1-mediated contraction. ET-1, via ETA receptors coupled to pertussis toxin-insensitive G proteins, stimulated SphK1 activity and induced its translocation to the membranes. Myometrial contraction triggered by ET-1 is consecutive to the sequential activation of PLC, protein kinase C, SphK1 and Rho kinase. Prolonged exposure of the myometrium to S1P downregulated S1P2 receptors and abolished the contraction induced by exogenous S1P. However, in these conditions, the tension triggered by ET-1 was not reduced, indicating that SphK activated by ET-1 contributed to its contractile effect via a S1P2 receptor-independent process. Our findings demonstrated that exogenous S1P and SphK activity regulated myometrial contraction and may be of physiological relevance in the regulation of uterine motility during gestation and parturition. uterus; contraction  相似文献   

3.

Background

Earlier we have shown that extracellular sphingosine-1-phosphate (S1P) induces migration of human pulmonary artery endothelial cells (HPAECs) through the activation of S1P1 receptor, PKCε, and PLD2-PKCζ-Rac1 signaling cascade. As endothelial cells generate intracellular S1P, here we have investigated the role of sphingosine kinases (SphKs) and S1P lyase (S1PL), that regulate intracellular S1P accumulation, in HPAEC motility.

Methodology/Principal Findings

Inhibition of SphK activity with a SphK inhibitor 2-(p-Hydroxyanilino)-4-(p-Chlorophenyl) Thiazole or down-regulation of Sphk1, but not SphK2, with siRNA decreased S1Pint, and attenuated S1Pext or serum-induced motility of HPAECs. On the contrary, inhibition of S1PL with 4-deoxypyridoxine or knockdown of S1PL with siRNA increased S1Pint and potentiated motility of HPAECs to S1Pext or serum. S1Pext mediates cell motility through activation of Rac1 and IQGAP1 signal transduction in HPAECs. Silencing of SphK1 by siRNA attenuated Rac1 and IQGAP1 translocation to the cell periphery; however, knockdown of S1PL with siRNA or 4-deoxypyridoxine augmented activated Rac1 and stimulated Rac1 and IQGAP1 translocation to cell periphery. The increased cell motility mediated by down-regulation was S1PL was pertussis toxin sensitive suggesting “inside-out” signaling of intracellularly generated S1P. Although S1P did not accumulate significantly in media under basal or S1PL knockdown conditions, addition of sodium vanadate increased S1P levels in the medium and inside the cells most likely by blocking phosphatases including lipid phosphate phosphatases (LPPs). Furthermore, addition of anti-S1P mAb to the incubation medium blocked S1Pext or 4-deoxypyridoxine-dependent endothelial cell motility.

Conclusions/Significance

These results suggest S1Pext mediated endothelial cell motility is dependent on intracellular S1P production, which is regulated, in part, by SphK1 and S1PL.  相似文献   

4.
Sphingosine kinases (SphKs) and ceramide kinase (CerK) phosphorylate sphingosine to sphingosine-1-phosphate (S1P) and ceramide to ceramide-1-phosphate (C1P), respectively. S1P and C1P are bioactive lipids that regulate cell fate/function and human health/diseases. The translocation and activity of SphK1 are regulated by its phosphorylation of Ser 225 and by anionic lipids such as phosphatidic acid and phosphatidylserine. However, the roles of another anionic lipid C1P on SphK1 functions have not yet been elucidated, thus, we here investigated the regulation of SphK1 by CerK/C1P. C1P concentration dependently bound with and activated recombinant human SphK1. The inhibition of CerK reduced the phorbol 12-myristate 13-acetate-induced translocation of SphK1 to the plasma membrane (PM) and activation of the enzyme in membrane fractions of cells. A treatment with C1P translocated wild-type SphK1, but not the SphK1-S225A mutant, to the PM without affecting phosphorylation signaling. A cationic RxRH sequence is proposed to be a C1P-binding motif in α-type cytosolic phospholipase A 2 and tumor necrosis factor α-converting enzyme. The mutation of four cationic amino acids to Ala in the 56-RRNHAR-61 domain in SphK1 reduced the phorbol 12-myristate 13-acetate- and C1P-induced translocation of SphK1 to the PM, however, the capacity of C1P to bind with and activate SphK1 was not affected by this mutation. In conclusion, C1P modulates SphK1 functions by interacting with multiple sites in SphK1.  相似文献   

5.
Prolactin (PRL) regulates cytoskeletal rearrangement and cell motility. PRL-activated Janus tyrosine kinase 2 (JAK2) phosphorylates the p21-activated serine-threonine kinase (PAK)1 and the Src homology 2 (SH2) domain-containing adapter protein SH2B1β. SH2B1β is an actin-binding protein that cross-links actin filaments, whereas PAK1 regulates the actin cytoskeleton by different mechanisms, including direct phosphorylation of the actin-binding protein filamin A (FLNa). Here, we have used a FLNa-deficient human melanoma cell line (M2) and its derivative line (A7) that stably expresses FLNa to demonstrate that SH2B1β and FLNa are required for maximal PRL-dependent cell ruffling. We have found that in addition to two actin-binding domains, SH2B1β has a FLNa-binding domain (amino acids 200-260) that binds directly to repeats 17-23 of FLNa. The SH2B1β-FLNa interaction participates in PRL-dependent actin rearrangement. We also show that phosphorylation of the three tyrosines of PAK1 by JAK2, as well as the presence of FLNa, play a role in PRL-dependent cell ruffling. Finally, we show that the actin- and FLNa-binding-deficient mutant of SH2B1β (SH2B1β 3Δ) abolished PRL-dependent ruffling and PRL-dependent cell migration when expressed along with PAK1 Y3F (JAK2 tyrosyl-phosphorylation-deficient mutant). Together, these data provide insight into a novel mechanism of PRL-stimulated regulation of the actin cytoskeleton and cell motility via JAK2 signaling through FLNa, PAK1, and SH2B1β. We propose a model for PRL-dependent regulation of the actin cytoskeleton that integrates our findings with previous studies.  相似文献   

6.
Zhang H  Li W  Sun S  Yu S  Zhang M  Zou F 《Cell proliferation》2012,45(2):167-175
Objectives: Sphingosine kinase (SphK), which is regulated by hypoxia, catalyses phosphorylation of sphingosine to produce sphingosine‐1‐phosphate, which stimulates invasiveness of gliomas. However, whether SphK is involved in proliferation of glioma cells under hypoxic conditions is not clearly understood. In this study, we have investigated the role of SphK in of proliferation glioma cells under hypoxia. Materials and methods: Effects of small interfering RNA (siRNA) on SphKs, SKI (inhibitor of SphK) and U0126 (inhibitor of ERK) on proliferation of glioma cells under hypoxia were studied using CCK‐8 assay and flow cytometry. Protein expression profiles were evaluated by Western blot analysis. Results:  SKI suppressed proliferation of glioma cells under hypoxia. Similarly, downregulation of SphKs by siRNA inhibited glioma cell proliferation, and the cell cycle was arrested in G2/M phase when SphK1 was inhibited. In addition, inhibition of SphK1 attenuated phosphorylation of ERK in hypoxic conditions. Furthermore, U0126 markedly inhibited cell population growth and arrested cells in G2/M as effectively as SKI. However, silencing SphK2 induced cell cycle arrest in the S phase and it showed little effect on hypoxia‐induced activation of ERK. Conclusions: SphK1 and SphK2 are involved in proliferation of glioma cells in hypoxic conditions through distinct signalling pathways. SphK1, but not SphK2, promotes cell population expansion in hypoxic conditions by activating ERK.  相似文献   

7.
We had found previously that neurotrophin-3 (NT-3) is a potent stimulator of cAMP-response element binding protein (CREB) phosphorylation in cultured oligodendrocyte progenitors. Here, we show that CREB phosphorylation in these cells is also highly stimulated by sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is known to be a potent mediator of numerous biological processes. Moreover, CREB phosphorylation in response to NT-3 involves sphingosine kinase 1 (SphK1), the enzyme that synthesizes S1P. Immunocytochemistry and confocal microscopy indicated that NT-3 induces translocation of SphK1 from the cytoplasm to the plasma membrane of oligodendrocytes, a process accompanied by increased SphK1 activity in the membrane fraction where its substrate sphingosine resides. To examine the involvement of SphK1 in NT-3 function, SphK1 expression was down-regulated by treatment with SphK1 sequence-specific small interfering RNA. Remarkably, the capacity of NT-3 to protect oligodendrocyte progenitors from apoptotic cell death induced by growth factor deprivation was abolished by down-regulating the expression of SphK1, as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Altogether, these results suggest that SphK1 plays a crucial role in the stimulation of oligodendrocyte progenitor survival by NT-3, and demonstrate a functional link between NT-3 and S1P signaling, adding to the complexity of mechanisms that modulate neurotrophin function and oligodendrocyte development.  相似文献   

8.
9.
10.
The role of protein kinase C (PKC) isozymes in phorbol myristate acetate (PMA)-induced sphingosine 1-phosphate (S1P) receptor 1 (S1P1) phosphorylation was studied. Activation of S1P1 receptors induced an immediate increase in intracellular calcium, which was blocked by preincubation with PMA. Both S1P and PMA were able to increase S1P1 phosphorylation in a concentration- and time-dependent fashion. Down-regulation of PKC (overnight incubation with PMA) blocked the subsequent effect of the phorbol ester on S1P1 phosphorylation, without decreasing that of the natural agonist. Pharmacological inhibition of PKC α prevented the effects of PMA on S1P-triggered intracellular calcium increase and on S1P1 phosphorylation; no such effect was observed on the effects of the sphingolipid agonist. The presence of PKC α and β isoforms in S1P1 immunoprecipitates was evidenced by Western blotting. Additionally, expression of dominant-negative mutants of PKC α or β and knockdown of these isozymes using short hairpin RNA, markedly attenuated PMA-induced S1P1 phosphorylation. Our results indicate that the classical isoforms, mainly PKC α, mediate PMA-induced phosphorylation and desensitization of S1P1.  相似文献   

11.
Sphingosine-1-phosphate (S1P), a serum-borne lipid mediator, was demonstrated to be a potent chemoattractant of endothelial cells. It was recently shown that the colocalization of cortactin and actin related protein 2/3 (Arp2/3) in the lamellipodia is critical to S1P-induced endothelial chemotaxis. In this report, we describe that S1P-stimulated cortactin translocation to the cell periphery to form lamellipodia is specifically mediated by the endothelial S1P1 G-protein coupled receptor, and is regulated by Gi-mediated Akt-dependent S1P1 receptor phosphorylation and Cdc42/Rac activation pathways. In contrast to Src-dependent fibroblast growth factor-induced cortactin translocation, tyrosine phosphorylation cascades are not required for S1P-mediated lamellipodia formation and chemotaxis. Furthermore, we also demonstrate that S1P signaling, via the Gi/Akt/S1P1 phosphorylation/Rac pathway, regulates the cortactin–Arp2/3 complex formation, which ultimately results in membrane ruffling, formation of the lamellipodia and endothelial migration.J.F. Lee and H. Ozaki contributed equally to this work  相似文献   

12.
We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 ∼2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the “missing link” mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3.Insulin-like growth factor-binding protein-3 (IGFBP-3)2 is one of the family of six IGFBPs that bind the peptide growth factors IGF-I and IGF-II with high affinity and regulate their bioactivity (1). As the predominant carrier of IGFs in the endocrine system, IGFBP-3 regulates the movement of these growth factors from the circulation to target tissues and inhibits their proliferative and antiapoptotic cellular effects by blocking their activation of the type 1 IGF receptor (IGFR1) at the cell surface. In vitro studies in a variety of cell types have revealed that IGFBP-3 may also impact on cell growth and survival independently of modulating IGF bioactivity, inducing cell cycle arrest and apoptosis by regulation of apoptotic effector proteins (24) and interaction with nuclear receptors (57).There is, however, also evidence of an association between IGFBP-3 and enhanced cell proliferation. Some clinical studies in breast, prostate, pancreatic, renal cell, and non-small cell lung cancers have shown that a high level of tissue expression of IGFBP-3 correlates with increased tumor growth or malignancy (813). Although the mechanism linking IGFBP-3 with growth stimulation in vivo remains unclear, we and others have shown that, in vitro, IGFBP-3 can enhance the effects of stimulatory growth factors. Human and bovine skin fibroblasts exposed to low concentrations of exogenous IGFBP-3 exhibit enhanced IGF-stimulated DNA synthesis (14, 15), and similarly, exogenous and endogenous IGFBP-3 enhanced the growth response to IGF-I in the MCF-7 breast cancer cell line (16). We have also shown previously that IGFBP-3 is inhibitory to DNA synthesis in MCF-10A breast epithelial cells in the absence of exogenous growth factors or serum (17), but is growth stimulatory in the presence of EGF in the same cell line (18). There is no evidence that potentiation of EGF or IGF bioactivity by IGFBP-3 requires direct interaction between IGFBP-3 and the growth factor receptors (15, 18), but the mechanism underlying the effects of IGFBP-3 on growth factor signaling has not been elucidated.Recently it was suggested that, in human umbilical vein endothelial cells, an antiapoptotic effect of IGFBP-3 is associated with increased expression and activity of sphingosine kinase 1 (SphK1), and formation of the bioactive sphingolipid sphingosine 1-phosphate (S1P) (19, 20). SphK1 has been shown to have a role in oncogenesis (21), and S1P, acting both as an intracellular second messenger and extracellularly through activation of specific S1P receptors, stimulates cell proliferation and survival (22). In addition to transducing S1P signaling, the G-protein-coupled S1P receptors have been implicated in signal amplification of a variety of growth factors receptors, including the EGF and platelet-derived growth factor receptors, via receptor transactivation (23, 24). In this study we investigated whether the sphingosine kinase system is involved in modulation of growth factor receptor signaling pathways by IGFBP-3 and demonstrate that SphK1 expression is stimulated by IGFBP-3 in MCF-10A cells, and its activity is required for potentiation of EGF and IGF-I signaling by IGFBP-3 in these cells.  相似文献   

13.
Sphingosine-1-phosphate (S1P), formed by sphingosine kinases (SphKs), regulates cellular proliferation and migration by acting as an agonist at specific receptors or intracellularly. Since S1P's effects are probably dependent on subcellular localization of its formation and degradation, we have studied the influence of G protein-coupled receptors on the localization of SphK1. Activation of Gq-coupled receptors induced a profound, rapid (half-life 3–5 s) and long-lasting (> 2 h) translocation of SphK1 to the plasma membrane. This was mimicked by expression of constitutively active G protein α-subunits specifically of the Gq family. Classical Gq signalling pathways, or phosphorylation at Ser225, phospholipase D and Ca2+/calmodulin were not involved in M3 receptor-induced SphK1 translocation in HEK-293 cells. Translocation was associated with S1P receptor internalization, which was dependent on catalytic activity of SphK1 and S1P receptor binding and thus resulted from S1P receptor cross-activation. It is concluded that SphK1 is an important effector of Gq-coupled receptors, linking them via cross-activation of S1P receptors to Gi and G12/13 signalling pathways.  相似文献   

14.
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is the ligand for five specific G protein-coupled receptors, named S1P(1) to S1P(5). In this study, we found that cross-communication between platelet-derived growth factor receptor and S1P(2) serves as a negative damper of PDGF functions. Deletion of the S1P(2) receptor dramatically increased migration of mouse embryonic fibroblasts toward S1P, serum, and PDGF but not fibronectin. This enhanced migration was dependent on expression of S1P(1) and sphingosine kinase 1 (SphK1), the enzyme that produces S1P, as revealed by downregulation of their expression with antisense RNA and small interfering RNA, respectively. Although S1P(2) deletion had no significant effect on tyrosine phosphorylation of the PDGF receptors or activation of extracellular signal-regulated kinase 1/2 or Akt induced by PDGF, it reduced sustained PDGF-dependent p38 phosphorylation and markedly enhanced Rac activation. Surprisingly, S1P(2)-null cells not only exhibited enhanced proliferation but also markedly increased SphK1 expression and activity. Conversely, reintroduction of S1P(2) reduced DNA synthesis and expression of SphK1. Thus, S1P(2) serves as a negative regulator of PDGF-induced migration and proliferation as well as SphK1 expression. Our results suggest that a complex interplay between PDGFR and S1P receptors determines their functions.  相似文献   

15.
We demonstrate here that the bioactive lipid sphingosine 1-phosphate (S1P) uses sphingosine 1-phosphate receptor 4 (S1P4) and human epidermal growth factor receptor 2 (HER2) to stimulate the extracellular signal regulated protein kinase 1/2 (ERK-1/2) pathway in MDA-MB-453 cells. This was based on several lines of evidence. First, the S1P stimulation of ERK-1/2 was abolished by JTE013, which we show here is an S1P2/4 antagonist and reduced by siRNA knockdown of S1P4. Second, the S1P-stimulated activation of ERK-1/2 was almost completely abolished by a HER2 inhibitor (ErbB2 inhibitor II) and reduced by siRNA knockdown of HER2 expression. Third, phyto-S1P, which is an S1P4 agonist, stimulated ERK-1/2 activation in an S1P4- and HER2-dependent manner. Fourth, FTY720 phosphate, which is an agonist at S1P1,3,4,5 but not S1P2 stimulated activation of ERK-1/2. Fifth, S1P stimulated the tyrosine phosphorylation of HER2, which was reduced by JTE013. HER2 which is an orphan receptor tyrosine kinase is the preferred dimerization partner of the EGF receptor. However, EGF-stimulated activation of ERK-1/2 was not affected by siRNA knockdown of HER2 or by ErbB2 (epidermal growth factor receptor 2 (or HER2)) inhibitor II in MDA-MB-453 cells. Moreover, S1P-stimulated activation of ERK-1/2 does not require an EGF receptor. Thus, S1P and EGF function in a mutually exclusive manner. In conclusion, the magnitude of the signaling gain on the ERK-1/2 pathway produced in response to S1P can be increased by HER2 in MDA-MB-453 cells. The linkage of S1P with an oncogene suggests that S1P and specifically S1P4 may have an important role in breast cancer progression.  相似文献   

16.

Objective

Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated.

Methods and Results

Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes.

Conclusion

The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.  相似文献   

17.
It has been postulated that disturbances in the sphingolipid metabolism play a key role in the pathogenesis of Alzheimer’s disease (AD). An alteration in sphingosine kinases 1, 2 (SphK1/2) and sphingosine-1-phosphate (S1P) was recently reported in AD. However, the effect of AD-related amyloid beta (Aβ) peptides on SphK1/2 and the role of S1P in Aβ toxicity have not been fully elucidated. In this study the relationship between the Aβ concentration and SphK1/2 expression/activity was analysed in PC12 cells transfected with the Aβ precursor protein, wild-type (APPwt) or bearing a double Swedish mutation (APPsw). The role of SphK(s)/S1P in cell survival and death was also investigated. Our results indicated that endogenously liberated Aβ significantly decreases expression and activity of SphK1/2. The SphK(s) inhibitor (SKI II, 10 μM) decreased the viability of APPwt, APPsw as well as empty vector-transfected PC12 control cells. Our data demonstrated that expression of S1P receptor-1 (S1P1) was significantly reduced in APP-transfected cells. The effect of S1P applied exogenously was cell type-dependent. In control and APPwt cells S1P reduced the effect of the SphK1 inhibitor on death signalling. Conversely, it decreased the survival of APPsw cells and had no protective effect on cells treated with SKI II. Using the S1P1 agonist (SEW2871, 5 μM) and antagonist (W123, 20 μM), we demonstrated that the cytoprotective effect of S1P was receptor-independent. Summarising, we showed that Aβ peptides evoke down-regulation of gene expression and activity for SphK(s) and S1P1. Inhibition of SphK(s) significantly decreased cell survival. The effect of exogenous S1P depended on the concentration of Aβ peptides.  相似文献   

18.

Background

The objective of this study was to examine the effects of short (2 h) and prolonged (18 h) inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate (PA) induced insulin resistance in L6 myotubes.

Methods

L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor) or PA and Ski II (SphK1inhibitor) for different time periods (2 h and 18 h). Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA), ceramide (CER), sphingosine (SFO), sphingosine-1-phosphate (S1P)] were estimated by HPLC.

Results

Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio) in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes.

Conclusion

Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor). Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.  相似文献   

19.
Activation of the Ras-MAPK signal transduction pathway is necessary for biological responses both to growth factors and ECM. Here, we provide evidence that phosphorylation of S298 of MAPK kinase 1 (MEK1) by p21-activated kinase (PAK) is a site of convergence for integrin and growth factor signaling. We find that adhesion to fibronectin induces PAK1-dependent phosphorylation of MEK1 on S298 and that this phosphorylation is necessary for efficient activation of MEK1 and subsequent MAPK activation. The rapid and efficient activation of MEK and phosphorylation on S298 induced by cell adhesion to fibronectin is influenced by FAK and Src signaling and is paralleled by localization of phospho-S298 MEK1 and phospho-MAPK staining in peripheral membrane-proximal adhesion structures. We propose that FAK/Src-dependent, PAK1-mediated phosphorylation of MEK1 on S298 is central to the organization and localization of active Raf-MEK1-MAPK signaling complexes, and that formation of such complexes contributes to the adhesion dependence of growth factor signaling to MAPK.  相似文献   

20.
The induction of ischemic tolerance by preconditioning provides a platform to elucidate endogenous mechanisms of stroke protection. In these studies, we characterize the relationship between hypoxia‐inducible factor (HIF), sphingosine kinase 2 (SphK2), and chemokine (C–C motif) ligand 2 (CCL2) in models of hypoxic or pharmacological preconditioning‐induced ischemic tolerance. A genetics‐based approach using SphK2‐ and CCL2‐null mice showed both SphK2 and CCL2 to be necessary for the induction of ischemic tolerance following preconditioning with hypoxia, the hypoxia‐mimetic cobalt chloride, or the sphingosine‐1‐phosphate (S1P) agonist FTY720. A pharmacological approach confirmed the necessity of HIF signaling for all three preconditioning stimuli, and showed that the SphK/S1P pathway transduces tolerance via the S1P1 receptor. In addition, our data suggest significant cross‐talk between HIF and SphK2‐produced S1P signaling, which together act to up‐regulate CCL2 expression. Overall, HIF, SphK, S1P, and CCL2 participate in a signaling cascade to induce the gene expression responsible for the stroke‐tolerant phenotype established by hypoxic and FTY720 preconditioning. The identification of these common molecular mediators involved in signaling the genomic response to multiple preconditioning stimuli provides several targets for therapeutic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号