共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcosm for assessing survival of genetically engineered microorganisms in aquatic environments. 总被引:7,自引:7,他引:0 下载免费PDF全文
Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed. 相似文献
2.
Microcosm for assessing survival of genetically engineered microorganisms in aquatic environments 总被引:4,自引:0,他引:4
Laboratory-contained microcosms are important for studying the fate and survival of genetically engineered microorganisms. In this study, we describe a simple aquatic microcosm that utilizes survival chambers in a flowthrough or static renewal system. The model was used to study the survival of genetically engineered and wild-type strains of Escherichia coli and Pseudomonas putida in the lake water environment. Temperature-dependent studies indicated that the genetically engineered microorganisms survived better or at least as well as their wild-type counterparts at 15, 25, and 30 degrees C. The genetic determinants of the genetically engineered microorganisms also remained fairly stable within the host cell under the tested conditions. In the presence of organisms indigenous to lake water, E. coli was eliminated after 20 days, whereas P. putida showed an initial decline but was able to stabilize its population after 5 days. A herbicide, Hydrothol-191, caused a significant decline in numbers of P. putida, but no significant difference was observed between the genetically engineered microorganisms and the wild-type strain. The microcosm described is simple, can be easily adapted to study a variety of environmental variables, and has the advantage that the organisms tested are constantly exposed to test waters that are continuously renewed. 相似文献
3.
Dr. M. V. Walter L. A. Porteous V. J. Prince L. Ganio R. J. Seidler 《Current microbiology》1991,22(2):117-121
A microcosm is described to evaluate and measure bacterial conjugation in the rhizosphere of barley and radish with strains ofPseudomonas cepacia. The purpose was to describe a standard method useful for evaluating the propensity of genetically engineered microorganisms (GEMs) to transfer DNA to recipient bacteria. Results demonstrated the formation of transconjugants from the rhizosphere of each plant 24 h after inoculation. Transconjugant populations peaked at 1.8 × 102 colony forming units (CFU)/g root and associated soil in barley and 2.0×102 CFU/g root and associated soil in radish; they then declined over the next five days of the experiment. No significant differences were found in the survival of transconjugant populations monitored from the two plant species. The microcosm was also used to document the formation of false positive transconjugants, which resulted from donor and recipientP. cepacia mating on the surface of selective agar plates instead of in microcosms. Transconjugants resulting from such plate mating occurred in substantial numbers during the first 5 days of the experiment but declined to undetectable numbers by day 7. The use of nalidixic acid was investigated to determine the magnitude of plate mating. The number of transconjugants detected from radish rhizosphere was reduced by two orders of magnitude by including nalidixic acid in the plating medium; this indicated that 99% of the transconjugants were a result of plate mating. 相似文献
4.
5.
Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products 总被引:4,自引:0,他引:4
Lactobacillus sakei is a lactic acid bacterium naturally found on meat and often used as starter for the production of dry sausages or other fermented meat products. The gene encoding the green fluorescent protein (GFP) was cloned downstream from the constitutive L-lactate dehydrogenase promoter (pldhL) of L. sakei. The pldhL::gfp fusion was introduced in L. sakei either on a replicative plasmid or by double crossover integration into the chromosome, as a single copy. Both constructions were stable. Expression of GFP did not alter growth and was detectable by epifluorescence microscopy allowing the detection and monitoring of the development of GFP+ specific L. sakei strains both under growth laboratory conditions and in dry sausage samples. 相似文献
6.
Michael V. Walter Kathleen Barbour Michael McDowell Dr. Ramon J. Seidler 《Current microbiology》1987,15(4):193-197
A technique of potential use to the biotechnology industry was developed for studying the survival of bacteria in aqueous extracts of soil. The aqueous extracts of soil were placed into test tubes, amended as desired, inoculated with bacteria containing recombinant DNA, and incubated. Most bacteria introduced into filter-sterilized soil extracts were capable of multiplying and maintained populations of 10 E6 to 10 E8 cfu/ml over 13 days. However, bacteria introduced into nonsterile soil extracts at 10 E5 cfu/ml were found to decrease by 2–3 logs over a 13-day period. The soil extract method revealed that recombinant DNA plasmids had no significant effect on survival of thePseudomonas spp. andEscherichia coli strains examined. Extracts from soil provide a convenient and homogeneous milieu for estimating relative competitiveness and documenting survival characteristics of genetically engineered microorganisms. The use of aqueous extracts of soil offer convenience, a means of obtaining homogeneous cell suspensions, and ease of experimental replication over the inoculation of bacteria uniformly into soil. 相似文献
7.
8.
We have constructed three plasmid vectors for the expression of green fluorescent protein (GFP) fusion proteins using the following motif: (His)(6)-GFP-EK-X, where X represents chloramphenicol acetyl-transferase (CAT), human interleukin-2 (hIL-2), and organophosphorous hydrolase (OPH), respectively, (His)(6) represents a histidine affinity ligand for purification, and EK represents an enterokinase cleavage site for recovering the protein-of-interest from the fusion. The CAT and OPH fusion products ( approximately 63 kDa GFP/CAT and approximately 70 kDa GFP/OPH) were expressed at 4.85 microg/mL (19.9 microg/mg-total protein) and 1.42 microg/mL (4.2 microg/mg-total protein) in the cell lysis supernatant, and, in both cases, enzymatic activity was retained while coupled to GFP. In the case of hIL-2 fusion ( approximately 52 kDa), however, the GFP fluorescence was significantly reduced and most of the fusion was retained in the cell pellet. Linear relationships between GFP fluorescence and CAT or OPH concentration, and with enzymatic activity of CAT or OPH, indicated, for the first time, that in vivo noninvasive quantification of proteins-of-interest, was made possible by simple measurement of GFP fluorescence intensity. The utility of GFP as a reporter was not realized without disadvantages however, in particular, an incremental metabolic cost of GFP was found. This could be offset by many benefits foreseen in expression and purification efficiencies. 相似文献
9.
Green fluorescent protein (GFP), a relatively new reporter gene, is making an impact on many aspects of science. The attributes of GFP could also be applied to the area of recombinant protein production. The work described here represents the first experiments using GFP as a tool to monitor recombinant protein production in real time in the fermentation process. We have constructed plasmids containing an operon fusion of the gene encoding MetArg-human proinsulin and reporter gene GFP (GFP, BFP, and YFP variants). The MetArg-proinsulin and GFP variant reporter protein were overexpressed in Escherichia coli BL21(DE3) after isopropyl beta-d-thiogalactoside induction. The MetArg-proinsulin to YFP protein ratio did not change in the cells during the bioprocess. Since there is a quantitative relationship between the level of MetArg-proinsulin concentration and YFP fluorescence, it is possible to measure only YFP fluorescence in order to monitor the production of MetArg-proinsulin during the bioprocess. The expression level of MetArg-proinsulin could reach 20-25%. Some 140 mg recombinant MetArg-human proinsulin could be obtained easily from 1 liter of fermentation medium. The MetArg-proinsulin could simply be changed into human insulin by trypsin and carboxypeptidase B treatment in later steps. These experiments provide possibilities for using the YFP reporter gene as a convenient tool to monitor protein expression in biotechnological processes. The proposed technique could reduce the time- and labor-intensive analysis of protein production and would improve the efficiency of process development. 相似文献
10.
Plant-derived glucosides have attracted much attention due to their widespread applications. This class of products is difficult to isolate or to synthesize in pure form because of the resulting low yields. Thus, simple approaches for the generation of such glucosides would be highly beneficial. We purified and characterized a novel glucosyltransferase from plant cell suspension cultures of Rauvolfia serpentina, which showed rather low substrate specificity. We obtained its cDNA and expressed the active recombinant protein in bacteria (Escherichia coli) with excellent plant-specific glucosylation efficiencies. Compared with the plant system, the bacteria delivered the new enzyme, which was in the form of a soluble or matrix-bound enzyme, approximately 1800 times more efficiently for the synthesis of a wide range of glucosides. More importantly, the engineered E. coli strain allowed for in vivo glucosylation and release of the product into the culture medium, as shown by the formation of arbutin, which is a potent inhibitor of human melanin biosynthesis with commercial value. 相似文献
11.
Yukihiro Higashiyama Akinori Takahashi Yasunori Fukumoto Yuji Nakayama Naoto Yamaguchi 《Cytotechnology》2009,60(1-3):153-159
In the interphase nuclei of cultured cells, chromatin is compacted and organized in higher-order structures through the condensation and decondensation processes. Chromosomes in the interphase nucleus are known to occupy distinct territories. The chromosome territory-interchromatin compartment model premises that the interchromatin compartment is separated from compact higher-order chromatin domains and expands in between these chromatin-organized territories. Chromatin in cultured cells is compacted under some conditions, such as the stress of heat shock and high osmolarity, and Src-mediated nuclear tyrosine phosphorylation. We report here that a novel arginine-rich cationic protein is generated by frameshift mutation of enhanced green fluorescent protein (EGFP). The arginine-rich cationic protein is highly hydrophilic and contains potential arginine-based nuclear localization signals. Expression of the arginine-rich cationic protein shows its predominant localization to the nucleus and induces striking chromatin condensation in the interphase, which might be involved in interchromatin spacing or euchromatinization. Thus, the arginine-rich cationic protein as a new tool would be useful for dissecting chromatin architecture dynamics. 相似文献
12.
Use of a novel plasmid to monitor the fate of a genetically engineered Pseudomonas putida strain 总被引:1,自引:0,他引:1
Plasmid pSI30 was constructed to increase the sensitivity of detection of a genetically engineered micro-organism (GEM) and its recombinant DNA in environmental samples. This broad host-range, mobilizable plasmid contained chlorocatechol (clc) degradative genes, antibiotic resistance genes (ampicillin and kanamycin) and a fragment of eukaryotic DNA. The clc genes encode enzymes that convert 3-chlorocatechol to maleylacetic acid permitting the host, Pseudomonas putida RC-4, to grow on 3-chlorobenzoate. This catabolic phenotype was exploited using enrichment procedures to detect RC-4(pSI30) cells, free-living in the water column or when irreversibly bound to surfaces. The eukaryotic DNA sequence provided a unique target allowing positive identification by DNA:DNA hybridization. Using the eukaryotic DNA sequence as a probe, no transfer of the plasmid to indigenous bacteria was detected. Persistence of RC-4(pSI30) and its ability to multiply upon addition of 3-chlorobenzoate were demonstrated 78 days after its addition to natural freshwater. In flow-through microcosms RC-4(pSI30), undetectable as free-living cells, was found by enrichment as irreversibly bound sessile forms. These experiments revealed the stability of pSI30 and its utility in a 'combination' detection system for tracking the survival of a GEM and its DNA in environmental samples. 相似文献
13.
A plasmid, pBGFP, carrying green fluorescent protein (gfp) and benomyl-resistance genes was constructed and transformed into Metarhizium anisopliae. The transformants grew normally and GFP fluorescence was detected. No change was found in virulence for the transformants.
Fluorescence was detected in hyphae from the haemolymph of the infected locust, and the benomyl-resistance was maintained.
Results suggested that the two markers provided a useful tool for screening and monitoring the engineered strains even after
infection. 相似文献
14.
Nampally M Moerschbacher BM Kolkenbrock S 《Applied and environmental microbiology》2012,78(9):3114-3119
Chitin is the second most abundant polysaccharide, present, e.g., in insect and arthropod exoskeletons and fungal cell walls. In some species or under specific conditions, chitin appears to be enzymatically de-N-acetylated to chitosan-e.g., when pathogenic fungi invade their host tissues. Here, the deacetylation of chitin is assumed to represent a pathogenicity mechanism protecting the fungus from the host's chitin-driven immune response. While highly specific chitin binding lectins are well known and easily available, this is not the case for chitosan-specific probes. This is partly due to the poor antigenicity of chitosan so that producing high-affinity, specific antibodies is difficult. Also, lectins with specificity to chitosan have been described but are not commercially available, and our attempts to reproduce the findings were not successful. We have, therefore, generated a fusion protein between a chitosanase inactivated by site-directed mutagenesis, the green fluorescent protein (GFP), and StrepII, as well as His(6) tags for purification and detection. The recombinant chitosan affinity protein (CAP) expressed in Escherichia coli was shown to specifically bind to chitosan, but not to chitin, and the affinity increased with decreasing degree of acetylation. In vitro, CAP detection was possible either based on GFP fluorescence or using Strep-Tactin conjugates or anti-His(5) antibodies. CAP fluorescence microscopy revealed binding to the chitosan exposing endophytic infection structures of the wheat stem rust fungus, but not the chitin exposing ectophytic infection structures, verifying its suitability for in situ chitosan staining. 相似文献
15.
The recently isolated novel species Arthrobacter chlorophenolicus A6 is capable of growth on and degradation of high concentrations of 4-chlorophenol (up to 350 μg ml−1 ) as the sole carbon and energy source. This strain shows promise for bioremediation of environmental sites contaminated with high levels of chlorophenols. In this study, green fluorescent protein ( gfp ) or luciferase ( luc ) genes were used as biomarkers for monitoring cell number and activity, respectively, during degradation of 4-chlorophenol by A. chlorophenolicus cells. The individual marked strains, Arthrobacter chlorophenolicus A6L ( luc -tagged) and Arthrobacter chlorophenolicus A6G ( gfp -tagged), were monitored during degradation of 250 μg ml−1 4-chlorophenol in pure culture and 175 μg g−1 4-chlorophenol in soil microcosms. Both gene-tagged strains were capable of cleaning up the contaminated soil during 9 d incubation. During the bioremediation experiments, the luc -tagged cells were monitored using luminometry and the gfp -tagged cells using flow cytometry, in addition to selective plate counting for both strains. The cells remained at high population levels in the soil (evidenced by GFP-fluorescent cell counts) and the A. chlorophenolicus A6L population was metabolically active (evidenced by luciferase activity measurements). These results demonstrate that the Arthrobacter chlorophenolicus A6 inoculum is effective for cleaning-up soil containing high concentrations of 4-chlorophenol. 相似文献
16.
The demonstration that the green fluorescent protein (GFP) from the jellyfish Aequorea victoria required no jellyfish-specific cofactors and could be expressed as a fluorescent protein in heterologous hosts including both prokaryotes and eukaryotes sparked the development of GFP as one of the most common reporters in use today. Over the past several years, the utility of GFP as a reporter has been optimized through the isolation and engineering of variants with increased folding rates, different in vivo stabilities and colour variants with altered excitation and emission spectral properties. One of the great utilities of GFP is as a probe for characterizing spatial and temporal dynamics of gene expression, protein localization and protein-protein interactions in living cells. The innovative application of GFP as a reporter in bacteria has made a significant contribution to microbial cell biology. This review will highlight recent studies that demonstrate the potential of GFP for real-time analysis of gene expression, protein localization and the dynamics of signalling transduction pathways through protein-protein interactions. 相似文献
17.
There are surprisingly few studies that have successfully used the green fluorescent protein (GFP) as a quantitative reporter in selection experiments screening for inducible bacterial promoters. One explanation is that GFP expression may confer a fitness cost for bacteria. To test this possibility, we monitored the doubling time in enteric bacteria expressing GFP. Four bacterial species, Escherichia coli, enterohaemorrhagic E. coli, Shigella flexneri, Salmonella typhi, and Vibrio cholerae, were examined. The level of GFP expression was varied by using a salt-inducible promoter. After accounting for the increase in doubling time resulting from elevated osmolarity, the doubling time of all bacteria was found to increase proportionally with GFP expression, and some strains were more affected than others. Cultures of the bacteria most affected by GFP exhibited a proportion of elongated cells, which suggests that GFP production could interfere with cell division in these strains. The results in this study show that GFP is costly to bacteria and suggest that overly active promoters should be difficult to obtain from a genomic promoter library. They also suggest that the chances of succeeding in using GFP as a reporter in selection experiments are increased by growing the bacteria for the fewest number of generations and by subduing the expression of GFP whenever possible, such as by using a low copy vector to clone the library. 相似文献
18.
DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. 总被引:5,自引:24,他引:5 下载免费PDF全文
The polymerase chain reaction (PCR) was performed to amplify a 1.0-kilobase (kb) probe-specific region of DNA from the herbicide-degrading bacterium Pseudomonas cepacia AC1100 in order to increase the sensitivity of detecting the organism by dot-blot analysis. The 1.0-kb region was an integral portion of a larger 1.3-kb repeat sequence which is present as 15 to 20 copies on the P. cepacia AC1100 genome. PCR was performed by melting the target DNA, annealing 24-base oligonucleotide primers to unique sequences flanking the 1.0-kb region, and performing extension reactions with DNA polymerase. After extension, the DNA was again melted, and the procedure was repeated for a total of 25 to 30 cycles. After amplification the reaction mixture was transferred to nylon filters and hybridized against radiolabeled 1.0-kb fragment probe DNA. Amplified target DNA was detectable in samples initially containing as little as 0.3 pg of target. The addition of 20 micrograms of nonspecific DNA isolated from sediment samples did not hinder amplification or detection of the target DNA. The detection of 0.3 pg of target DNA was at least a 10(3)-fold increase in the sensitivity of detecting gene sequences compared with dot-blot analysis of nonamplified samples. PCR performed after bacterial DNA was isolated from sediment samples permitted the detection of as few as 100 cells of P. cepacia AC1100 per 100 g of sediment sample against a background of 10(11) diverse nontarget organisms; that is, P. cepacia AC1100 was positively detected at a concentration of 1 cell per g of sediment. This represented a 10(3)-fold increase in sensitivity compared with nonamplified samples. 相似文献
19.
Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. 下载免费PDF全文
We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual measurements of GFP fluorescence in growing bacterial cultures. To test the usefulness of the formula, we determined the activity of the LacI-repressible promoter P(A1/O4/O3) in response to increasing concentrations of the inducer IPTG (isopropyl-beta-D-thiogalactopyranoside) and were able to predict cooperativity between the LacI repressors on each of the two operator sites within P(A1/O4/O3). Aided by the model, we also quantified the proteolytic degradation of GFP[AAV], GFP[ASV], and GFP[LVA], which are popular variants of GFP with reduced stability in bacteria. Best described by Michaelis-Menten kinetics, the rate at which these variants were degraded was a function of the activity of the promoter that drives their synthesis: a weak promoter yielded proportionally less GFP fluorescence than a strong one. The degree of disproportionality is species dependent: the effect was more pronounced in Erwinia herbicola than in Escherichia coli. This phenomenon has important implications for the interpretation of fluorescence from bacterial reporters based on these GFP variants. The model furthermore predicted a significant effect of growth rate on the GFP content of individual bacteria, which if not accounted for might lead to misinterpretation of GFP data. In practice, our model will be helpful for prior testing of different combinations of promoter-gfp fusions that best fit the application of a particular bacterial reporter strain, and also for the interpretation of actual GFP fluorescence data that are obtained with that reporter. 相似文献
20.
Abad MF Di Benedetto G Magalhães PJ Filippin L Pozzan T 《The Journal of biological chemistry》2004,279(12):11521-11529
We here describe a new molecularly engineered green fluorescent protein chimera that shows a high sensitivity to pH in the alkaline range. This probe was named mtAlpHi, for mitochondrial alkaline pH indicator, and possesses several key properties that render it optimal for studying the dynamics of mitochondrial matrix pH, e.g. it has an apparent pK(a) (pK(a)') around 8.5, it shows reversible and large changes in fluorescence in response to changes in pH (both in vitro and in intact cells), and it is selectively targeted to the mitochondrial matrix. Using mtAlpHi we could monitor pH changes that occur in the mitochondrial matrix in a variety of situations, e.g. treatment with uncouplers or Ca(2+) ionophores, addition of drugs that interfere with ATP synthesis or electron flow in the respiratory chain, weak bases or acids, and receptor activation. We observed heterogeneous pH increases in the mitochondrial matrix during Ca(2+) accumulation by this organelle. Finally, we demonstrate that Ca(2+) mobilization from internal stores induced by ionomycin and A23187 cause a dramatic acidification of the mitochondrial matrix. 相似文献