首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pre-rRNA and rRNA components of rat and mouse liver nucleolar RNA were analysed. It was shown that upon denaturation, part of the 32 S pre-rRNA is converted into 28 S rRNA and 12 S RNA. The 12 S RNA from mouse (Mr, 0.36 X 10(6)) is larger than the one from rat (Mr, 0.32 X 10(6). The 12 S RNA chain is intact and resists denaturation treatment. The non-covalent binding of this RNA with nucleolar 28 S rRNA is stronger than that of 5.8 S rRNA with 28 S rRNA. Hybridization with a rat internal-transcribed spacer rDNA fragment identifies 12 S RNA as corresponding to the 5'-end non-conserved segment of 32 S pre-rRNA, including 5.8 S rRNA. The significance of the formation of a 12 S precursor to 5.8 S rRNA in the biogenesis of ribosomes in mammalian cells is discussed.  相似文献   

2.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

3.
rRNA from detergent-purified nuclei was fractionated quantitatively, by two independent methods, into nucleolar and nucleoplasmic RNA fractions. The two RNA fractions were analysed by urea/agar-gel electrophoresis and the amount of pre-rRNA (precursor of rRNA) and rRNA components was determined. The rRNA constitutes 35% of total nuclear RNA, of which two-thirds are in nucleolar RNA and one-third in nucleoplasmic RNA. The identified pre-rRNA components (45 S, 41 S, 39 S, 36 S, 32 S and 21 S) are confined to the nucleolus and constitute about 70% of its rRNA. The remaining 30% are represented by 28 S and 18 S rRNA, in a molar ratio of 1.4. The bulk of rRNA in nucleoplasmic RNA is represented by 28 S and 18 S rRNA in a molar ratio close to 1.0. Part of the mature rRNA species in nucleoplasmic RNA originate from ribosomes attached to the outer nuclear membrane, which resist detergent treatment. The absolute amount of nuclear pre-rRNA and rRNA components was evaluated. The amount of 32 S and 21 S pre-rRNA (2.9 x 10(4) and 2.5 x 10(4) molecules per nucleus respectively) is 2-3-fold higher than that of 45 S, 41 S and 36 S pre-rRNA.  相似文献   

4.
T O Sitz  N Banerjee  R N Nazar 《Biochemistry》1981,20(14):4029-4033
Naturally occurring differences in the nucleotide sequences of 5.8S ribosomal ribonucleic acids (rRNAs) from a variety of organisms have been used to study the role of specific nucleotides in the secondary structure and intermolecular interactions of this RNA. Significant differences in the electrophoretic mobilities of free 5.8S RNAs and the thermal stabilities of 5.8S--28S rRNA complexes were observed even in such closely related sequences as those of man, rat, turtle, and chicken. A single base transition from a guanylic acid residue in position 2 in mammalian 5.8S rRNA to an adenylic acid residue in turtle and chicken 5.8S rRNA results both in a more open molecular conformation and in a 5.8S--28S rRNA junction which is 3.5 degrees C more stable to thermal denaturation. Other changes such as the deletion of single nucleotides from either the 5' or the 3' terminals have no detectable effect on these features. The results support secondary structure models for free 5.8S rRNA in which the termini interact to various degrees and 5.8S--28S rRNA junctions in which both termini of the 5.8S molecule interact with the cognate high molecular weight RNA component.  相似文献   

5.
The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6X10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5'-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8X10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25X10(6) mol.wt.(41S), a precursor common to both mature rRNA species ; 2.60X10(6)(36S) and 2.15X10(6)(32S) precursors to 28S rRNA; 1.05X10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S leads to 41S leads to 32S+21S leads to 28S+18S rRNA and (ii) 45S leads to 41S leads to 36S+18S leads to 32S leads to 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9X10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.  相似文献   

6.
DNA was prepared from wild-type and two mutant stocks of Drosophila melanogaster that differed in their dosage of the nucleolar organizer region. The relative amounts of DNA from the nucleolar organizer region in these preparations of DNA were determined by hybridization with (3)H-labelled 28S rRNA. As expected, the amount of (3)H-labelled 28S rRNA that hybridized was directly related to the dosage of nucleolar organizer region. No positive correlation was observed between the amount of (3)H-labelled 5S RNA that hybridized and the dosage of nucleolar organizer region. Thus genes for 5S RNA are located primarily, if not exclusively, outside the nucleolar organizer region. The haploid genome of the wild-type D. melanogaster used in this work has 106 genes for 28S rRNA and 96-105 genes for 5S RNA.  相似文献   

7.
It is shown that the heterogeneous nuclear RNA (HnRNA) synthesized in the presence of actinomycin and at low and high temperatures sediments in low-ionic-strength sucrose gradients between the rRNA components, similar to the unmethylated RNA synthesized under ;step-down' conditions. If the ionic strength is increased then the HnRNA sediments more rapidly than 28S rRNA, with a large proportion about the 45S precursor rRNA position. Initially this was thought to be due to aggregation of the HnRNA; however, centrifugation and electrophoresis in completely denaturing conditions suggest that the molecular weight of this species of RNA is very large The experiments reveal that HnRNA is conformationally unstable relative to the nucleolar RNA and that the slower sedimentation rate of HnRNA in 5mm-EDTA-Tris base-sucrose gradients reflects the greater expansion of the HnRNA relative to the nucleolar RNA. The implications of this finding are discussed.  相似文献   

8.
RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.   总被引:17,自引:1,他引:16       下载免费PDF全文
J Venema  D Tollervey 《The EMBO journal》1996,15(20):5701-5714
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved.  相似文献   

9.
The initial endonuclease cleavage site in 32 S pre-rRNA (precursor to rRNA) is located within the rate rDNA sequence by S1-nuclease protection mapping of purified nucleolar 28 S rRNA and 12 S pre-rRNA. The heterogeneous 5'- and 3'-termini of these rRNA abut and map within two CTC motifs in tSi2 (internal transcribed spacer 2) located at 50-65 and 4-20 base-pairs upstream from the homogeneous 5'-end of the 28 S rRNA gene. These results show that multiple endonuclease cleavages occur at CUC sites in tSi2 to generate 28 S rRNA and 12 S pre-rRNA with heterogeneous 5'- and 3'-termini, respectively. These molecules have to be processed further to yield mature 28 S and 5.8 S rRNA. Thermal-denaturation studies revealed that the base-pairing association in the 12 S pre-rRNA:28 S rRNA complex is markedly stronger than that in the 5.8 S:28 S rRNA complex. The sequence of about one-quarter (1322 base-pairs) of the 5'-part of the rat 28 S rDNA was determined. A computer search reveals the possibility that the cleavage sites in the CUC motifs are single-stranded, flanked by strongly base-paired GC tracts, involving tSi2 and 28 S rRNA sequences. The subsequent nuclease cleavages, generating the termini of mature rRNA, seem to be directed by secondary-structure interactions between 5.8 S and 28 S rRNA segments in pre-rRNA. An analysis for base-pairing among evolutionarily conserved sequences in 32 S pre-rRNA suggests that the cleavages yielding mature 5.8 S and 28 S rRNA are directed by base-pairing between (i) the 3'-terminus of 5.8 S rRNA and the 5'-terminus of 28 S rRNA and (ii) the 5'-terminus of 5.8 S rRNA and internal sequences in domain I of 28 S rRNA. A general model for primary- and secondary-structure interactions in pre-rRNA processing is proposed, and its implications for ribosome biogenesis in eukaryotes are briefly discussed.  相似文献   

10.
Evidence for the sequence of duckweed (Lemna minor) chloroplast 5S rRNA was derived from the analysis of partial and complete enzymic digests of the 32P-labelled molecule. The possible sequence of the chloroplast 5S rRNA from three other flowering plants was deduced by complete digestion with T1 ribonuclease and comparison of the sequences of the oligonucleotide products with homologous sequences in the duckweed 5S rRNA. This analysis indicates that the chloroplast 5S rNA species differ appreciably from their cytosol counterparts but bear a strong resemblance to one another and to the 5S rRNA species of prokaryotes. Structural features apparently common to all 5S rRNA molecules are also discussed.  相似文献   

11.
12.
The three 3'-ends of the 28 S galleria RNA are all unesterified uridines. The two 18-S products due to the primary nick of the 28 S RNA have a similar 3'-terminal dinucleotide: G-Uoh. All of the seven species of secondary products from the Galleria 28 S RNA were suggested to have unesterified uridines, in common, at the 3'-ends. These results raise the possibility that the enzyme concerned in generating the primary and secondary nicks is a uracil-specific and 5'-phosphate-forming phosphodiesterase. The esterase, in association with the higher structure of the rRNA molecule in the larger subunit of the ribosome, probably determines the sites for these nicks in the 28 S rRNA. It is proposed also that the same enzyme can be responsible for cleaving the 28-S and 5.8-S rRNAs from their immediate precursor molecules.  相似文献   

13.
14.
alpha-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of alpha-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of alpha-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10-20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by alpha-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

15.
16.
The RNA of the blue-green alga Anacystis nidulans contains three ribosomal RNA species with molecular weights of 0.56x10(6), 0.9x10(6), and 1.1x10(6) if the RNA is extracted in the absence of Mg(2+). The 0.9x10(6)mol.wt. rRNA is extremely slowly labelled in (32)P-incorporation experiments. This rRNA may be a cleavage product of the 1.1x10(6)mol.wt. rRNA from the ribosomes of cells in certain physiological states (e.g. light-deficiency during growth). The cleavage of the 1.1x10(6)mol.wt. rRNA during the extraction procedure can be prevented by the addition of 10mm-MgCl(2). (32)P-pulse-labelling studies demonstrate the rapid synthesis of two ribosomal precursor RNA species. One precursor RNA migrating slightly slower than the 1.1x10(6)mol.wt. rRNA appears much less stable than the other precursor RNA, which shows the electrophoretic behaviour of the 0.7x10(6)mol.wt. rRNA. Our observations support the close relationship between bacteria and blue-green algae also with respect to rRNA maturation. The conversion of the ribosomal precursor RNA species into 0.56x10(6)- and 1.1x10(6)-mol.wt. rRNA species requires Mg(2+) in the incubation medium.  相似文献   

17.
Instability of 28S rRNA of Crotalus durissus terrificus liver was observed during hotphenol extraction: purified 28S rRNA is converted into an 18S RNA component by heat treatment. It was also found that ;6S' and ;8S' low-molecular-weight RNA species were released during the thermal conversion. This conversion and the release of the low-molecular-weight species were also induced by 8m-urea and 80% (v/v) dimethyl sulphoxide at 0 degrees C. Evidence is presented that this phenomenon is an irreversible process and results from the rupture of hydrogen bonds. The 18S RNA product was shown to be homogeneous by polyacrylamide-gel electrophoresis and by sucrose-density-gradient centrifugation. The base composition of the 18S RNA products obtained by heat, urea or dimethyl sulphoxide treatments was similar. The C+G content of the 18S RNA product was different from that of the native 18S rRNA, but similar to that of 28S rRNA.  相似文献   

18.
19.
Rat liver nuclei were fractionated into chromatin and nucleolar fractions. Chromatin DNA, which does not form hybrids with rRNA, was, nevertheless, able to hybridize with 32P-labelled total nucleolar RNA. The optimal temperature for this hybridization was 55 degrees C when the reaction was carried out in 2 X SSC (0.3 MnaCl + 0.3 M-sodium citrate). The hybrids formed were specific, as judged by analysis of thermal elution profiles. The low Tm (73 degreesC) observed could be explained by the low amount of DNA in the filters. The lenth of the hybridized sequences was extimated as 54 mucleotide pairs. Contamination to nucleolar RNA by nucleoplasmic RNA was ruled out by showing the former was able to form more hybrids than the latter. Competition experiments showed that hybridization of nucleolar RNA, although not competed with by rRNA, suffered pronounced competition from total microsomal RNA, even though the levels of competition obtained did not equal thsoe with cold nucleolar RNA as competitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号