首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. Control of glycogen metabolism by various substrates and hormones was studied in ruminant liver using isolated hepatocytes from fed sheep. 2. In these cells glucose appeared uneffective to stimulate glycogen synthesis whereas fructose and propionate activated glycogen synthase owing to (i) a decrease in phosphorylase a activity and (ii) changes in the intracellular concentrations of glucose 6-phosphate and adenine nucleotides. 3. The activation of hepatic glycogenolysis by glucagon and alpha 1-adrenergic agents was associated with increased phosphorylase a and decreased glycogen synthase activities. 4. The simultaneous changes in these two enzyme activities suggest that in sheep liver, activation of phosphorylase a is not a prerequisite step for synthase inactivation. 5. In sheep hepatocytes, in the presence of propionate and after a lag period, insulin activated glycogen synthase without affecting phosphorylase a. 6. This latter result suggests that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase. Insulin also antagonized glucagon effect on glycogen synthesis by counteracting the rise of cAMP.  相似文献   

2.
The rates of glycolysis and lipogenesis in isolated perfused liver of well-fed rats were studied. When liver was allowed to synthesize [14C]glycogen prior to perfusion, no more than 9% of the degraded [14C]glycogen was recovered in lactate and 6% in lipid. Addition of glucose, fructose and sorbitol enhanced concomitantly the formation of lactate and pyruvate and the rate of release of triglyceride and free fatty acid. Glucose was less efficient than fructose or sorbitol. The incorporation of 14C from these 14C-labelled substrates into lactate, pyruvate and lipids confirmed their role as carbon sources. Incorporation of 14C into the glycerol moiety of neutral lipid exceeded that found in the fatty acids, suggesting that these substrates contributed largely to the esterification of fatty acids. The total rate of de novo fatty acid synthesis was correlated with the formation of lactate and pyruvate. It is concluded that increased rates of aerobic glycolysis are related to increased rates of lipogenesis.  相似文献   

3.
Hepatic insulin resistance in the leptin-receptor defective Zucker fa/fa rat is associated with impaired glycogen synthesis and increased activity of phosphorylase-a. We investigated the coupling between phosphorylase-a and glycogen synthesis in hepatocytes from fa/fa rats by modulating the concentration of phosphorylase-a. Treatment of hepatocytes from fa/fa rats and Fa/? controls with a selective phosphorylase inhibitor caused depletion of phosphorylase-a, activation of glycogen synthase and stimulation of glycogen synthesis. The flux-control coefficient of phosphorylase on glycogen synthesis was glucose dependent and at 10 mm glucose was higher in fa/fa than Fa/? hepatocytes. There was an inverse correlation between the activities of glycogen synthase and phosphorylase-a in both fa/fa and Fa/? hepatocytes. However, fa/fa hepatocytes had a higher activity of phosphorylase-a, for a corresponding activity of glycogen synthase. This defect was, in part, normalized by expression of the glycogen-targeting protein, PTG. Hepatocytes from fa/fa rats had normal expression of the glycogen-targeting proteins G(L) and PTG but markedly reduced expression of R6. Expression of R6 protein was increased in hepatocytes from Wistar rats after incubation with leptin and insulin. Diminished hepatic R6 expression in the leptin-receptor defective fa/fa rat may be a contributing factor to the elevated phosphorylase activity and/or its high control strength on glycogen synthesis.  相似文献   

4.
Glycogen synthesis from various combinations of substrates by hepatocytes isolated from rats fasted 24 h was studied. As reported by Katz et al. (Katz, J., Golden, S., and Wals, P. A. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3433-3437), appreciable rates of glycogen synthesis occurred only in the presence of gluconeogenic precursors and one of several amino acids, which includes L-glutamine. L-Leucine had negligible effects on glycogen synthesis from 20 mM dihydroxyacetone and/or 15 mM glucose when L-glutamine was not added to the medium. In the presence of 10 mM L-glutamine, L-leucine greatly increased glycogen synthesis from these substrates. alpha-Ketoisocaproate was ineffective, as was oleate. NH4Cl depressed glycogen synthesis from 10 mM glucose plus 20 mM dihydroxyacetone in the absence of added L-glutamine and enhanced that in its presence, but these effects were weak compared to those of L-leucine. The amino acid analogues L-norvaline and L-norleucine exerted effects that were similar to those exerted by L-leucine. Under all conditions studied, cycloheximide and puromycin inhibited net glycogen synthesis. Cycloheximide did not stimulate gluconeogenesis from dihydroxyacetone, or phosphorylase in hepatocytes from starved rats, or glycogenolysis in hepatocytes from fed rats. Puromycin, however, stimulated glycogenolysis in hepatocytes from fed rats. Glycogen synthesis from 20 mM dihydroxyacetone proceeds with a pronounced initial lag phase that can be shortened by incubation of cells with glutamine plus leucine before addition of dihydroxyacetone. Concurrent measurements of glycogen synthesis, glycogen synthase, and gluconeogenesis under different conditions reveal that in addition to protein synthesis, activation of glycogen synthase, which must occur to allow glycogen synthesis in hepatocytes, requires a second component which can be satisfied by addition of dihydroxyacetone or fructose to the cells.  相似文献   

5.
Summary Isolated hepatocyte preparations from fed immature American eels,Anguilla rostrata Le Sueur, were used to study gluconeogenic, lipogenic, glycogenic and oxidative rates of radioactively labelled lactate, glycerol, alanine and aspartate. Eel hepatocytes maintain membrane integrity and energy charge during a 2 h incubation period and are considered a viable preparation for studying fish liver metabolism.Incubating eel hepatocytes with 10 mM substrates, the following results were obtained: glycerol, alanine and lactate, in that order, were effective gluconeogenic substrates; these three substrates reduced glucose release from glycogen stores, while aspartate had no such effect; lactate, alanine and aspartate led to high rates of glycerol production, with subsequent incorporation into lipid; incorporation into glycogen was low from all substrates; and, alanine oxidation was seven times higher than that observed with other substrates.When eel hepatocytes were incubated with low or physiological substrate concentrations gluconeogenic rates from lactate were twice those from alanine; rates from aspartate were very low. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis, and had no significant effect on glycogenolysis. Cortisol increased gluconeogenic rates from 1 mM lactate.Thus, in the presence of adequate substrate, eel liver gluconeogenesis is preferentially stimulated relative to glycogenolysis to produce plasma glucose. These data support three important roles for gluconeogenesis: the recycling of muscle lactate, the synthesis of glucose from dietary amino acids to supplement glucose levels, and the production of glycerol for lipogenesis.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

6.
Rajasekar P  Anuradha CV 《Life sciences》2007,80(13):1176-1183
High fructose feeding (60 g/100 g diet) in rodents induces alterations in both glucose and lipid metabolism. The present study was aimed to evaluate whether intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria, could attenuate derangements in carbohydrate metabolizing enzymes and glucose overproduction in high fructose-diet fed rats. Male Wistar rats of body weight 150-160 g were divided into 4 groups of 6 rats each. Groups 1 and 4 animals received control diet while the groups 2 and 3 rats received high fructose-diet. Groups 3 and 4 animals were treated with CA (300 mg/Kg body weight/day, i.p.) for 30 days. At the end of the experimental period, levels of carnitine, glucose, insulin, lactate, pyruvate, glycerol, triglycerides and free fatty acids in plasma were determined. The activities of carbohydrate metabolizing enzymes and glycogen content in liver and muscle were assayed. Hepatocytes isolated from liver were studied for the gluconeogenic activity in the presence of substrates such as pyruvate, lactate, glycerol, fructose and alanine. Fructose-diet fed animals showed alterations in glucose metabolizing enzymes, increased circulating levels of gluconeogenic substrates and depletion of glycogen in liver and muscle. There was increased glucose output from hepatocytes of animals fed fructose-diet alone with all the gluconeogenic substrates. The abnormalities associated with fructose feeding such as increased gluconeogenesis, reduced glycogen content and other parameters were brought back to near normal levels by CA. Hepatocytes from these animals showed significant inhibition of glucose production from pyruvate (74.3%), lactate (65.4%), glycerol (69.6%), fructose (56.2%) and alanine (63.6%) as compared to CA untreated fructose-fed animals. The benefits observed could be attributed to the effect of CA on fatty acyl-CoA transport.  相似文献   

7.
Effect of fructose on glycogen synthesis in the perfused rat liver   总被引:1,自引:0,他引:1  
The effect of fructose on glycogen synthesis was examined in the perfused liver of starved rats. With increasing fructose concentration in the perfusate, glycogen synthesis and the % a form of glycogen synthase increased to a maximum at 2 mM and then decreased, progressively. The glucose 6-P level increased with the increase in fructose concentration. On the other hand, the ATP content was unchanged at a concentration of 2 mM or less and decreased at 3 mM or more. We also showed that the stimulation of glycogen synthesis by fructose at a concentration of 2 mM or less was due to activation of glycogen synthase by accumulated glucose 6-P and that ATP depletion at a concentration of 3 mM or more caused an increase in phosphorylase a and a decrease in glycogen synthase activity even in the presence of a high concentration of glucose 6-P.  相似文献   

8.
Zucker diabetic fatty rats develop type 2 diabetes concomitantly with peripheral insulin resistance. Hepatocytes from these rats and their control lean counterparts have been cultured, and a number of key parameters of glucose metabolism have been determined. Glucokinase activity was 4.5-fold lower in hepatocytes from diabetic rats than in hepatocytes from healthy ones. In contrast, hexokinase activity was about 2-fold higher in hepatocytes from diabetic animals than in healthy ones. Glucose-6-phosphatase activity was not significantly different. Despite the altered ratios of glucokinase to hexokinase activity, intracellular glucose 6-phosphate concentrations were similar in the two types of cells when they where incubated with 1-25 mM glucose. However, glycogen levels and glycogen synthase activity ratio were lower in hepatocytes from diabetic animals. Total pyruvate kinase activity and its activity ratio as well as fructose 2,6-bisphosphate concentration and lactate production were also lower in cells from diabetic animals. All of these data indicate that glucose metabolism is clearly impaired in hepatocytes from Zucker diabetic fatty rats. Glucokinase overexpression using adenovirus restored glucose metabolism in diabetic hepatocytes. In glucokinase-overexpressing cells, glucose 6-phosphate levels increased. Moreover, glycogen deposition was greatly enhanced due to the activation of glycogen synthase. Pyruvate kinase was also activated, and fructose-2,6-bisphosphate concentration and lactate production were increased in glucokinase-overexpressing diabetic hepatocytes. Overexpression of hexokinase I did not increase glycogen deposition. In conclusion, hepatocytes from Zucker diabetic fatty rats showed depressed glycogen and glycolytic metabolism, but glucokinase overexpression improved their glucose utilization and storage.  相似文献   

9.
Isolated kidney tubules synthesize glucose actively from fructose, lactate, glycerol and pyruvate and, to a lesser extent, from a variety of amino acids. Ethanol stimulated gluconeogenesis from pyruvate and inhibited it from lactate. The aminotransferase inhibitor, aminooxyacetate, greatly reduced synthesis from lactate but not from pyruvate. Quinolinate inhibited gluconeogenesis from both precursors, indicating an active role for cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in the gluconeogenic pathway. Incorporation of lactate or glucose into triglycerides was relatively low, and since no fatty acid synthase (FAS) activity could be detected, probably represented chain elongation or reesterification.  相似文献   

10.
The uptake of circulating substrates, lactate, glucose and free fatty acids (FFA) has been investigated concurrently with the tissular contents of these principles and the glycogen and triglyceride stores in the dog heart in situ submitted to incomplete obstruction of left coronary bed. Transmural samples necessary for the repeated determination of tissular substrates were taken from left ventricular wall by means of a total cardiopulmonary by-pass system, then divided to allow the analysis separately in subendocardial and subepicardial layer. A 40 to 70% reduction in coronary blood flow gave rise to decrease or suppression of uptake of all the substrates or even to conversion of uptake into output. The modifications of uptake are chiefly related to the deficiency of breakdown by oxidation, though lessened in the case of FFA by incorporation into triglycerides and enhanced in the case of glucose by glycogenolysis. Glycogenolysis and consequent anaerobic glycolysis appear to be the main process available against the energy cellular defect linked with oxygen lack which affects notably more subendocardial than subepicardial layer.  相似文献   

11.
The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced an activation of glycogen phosphorylase and an inactivation of glycogen synthase when added to the cdc35 mutant incubated at the restrictive temperature of 35 degrees C without affecting cyclic AMP concentration.  相似文献   

12.
Lactate production in the perfused rat liver   总被引:10,自引:9,他引:1       下载免费PDF全文
1. In aerobic conditions the isolated perfused liver from well-fed rats rapidly formed lactate from endogenous glycogen until the lactate concentration in the perfusion medium reached about 2mm (i.e. the concentration of lactate in blood in vivo) and then production ceased. Pyruvate was formed in proportion to the lactate, the [lactate]/[pyruvate] ratio remaining between 8 and 15. 2. The addition of 5mm- or 10mm-glucose did not affect lactate production, but 20mm- and 40mm-glucose greatly increased lactate production. This effect of high glucose concentration can be accounted for by the activity of glucokinase. 3. The perfused liver released glucose into the medium until the concentration was about 6mm. When 5mm- or 10mm-glucose was added to the medium much less glucose was released. 4. At high glucose concentrations (40mm) more glucose was taken up than lactate and pyruvate were produced; the excess of glucose was probably converted into glycogen. 5. In anaerobic conditions, livers of well-fed rats produced lactate at relatively high rates (2.5mumol/min per g wet wt.). Glucose was also rapidly released, at an initial rate of 3.2mumol/min per g wet wt. Both lactate and glucose production ceased when the liver glycogen was depleted. 6. Addition of 20mm-glucose increased the rate of anaerobic production of lactate. 7. d-Fructose also increased anaerobic production of lactate. In the presence of 20mm-fructose some glucose was formed anaerobically from fructose. 8. In the perfused liver from starved rats the rate of lactate formation was very low and the increase after addition of glucose and fructose was slight. 9. The glycolytic capacity of the liver from well-fed rats is equivalent to its capacity for fatty acid synthesis and it is pointed out that hepatic glycolysis (producing acetyl-CoA in aerobic conditions) is not primarily an energy-providing process but part of the mechanism converting carbohydrate into fat.  相似文献   

13.
Glycogen synthesis by rat hepatocytes.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Katz  S Golden    P A Wals 《The Biochemical journal》1979,180(2):389-402
1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.  相似文献   

14.
Effect of glucose on ATP dephosphorylation in rat spermatids   总被引:2,自引:0,他引:2  
Round spermatids were isolated from rat testes and the effects of different energy-yielding substrates on the cellular ATP content were estimated. The ATP content was constant and high (6-8 nmol/10(6) cells) during metabolism of exogenous lactate. During incubation for 30 min in the absence of exogenous lactate, there was a remarkably slow decline of the ATP content, indicating ATP production from other substrates. It was shown that this could reflect beta-oxidation of fatty acids, but not the mobilization of an endogenous pool of acetylcarnitine. Glucose metabolism in the absence of exogenous lactate resulted in a rapid decline of the ATP content. This effect of glucose was correlated with a high fructose 1,6-biphosphate content (6-7 nmol/10(6) cells) and could be prevented by the addition of lactate. It is suggested that metabolism of glucose (and also mannose and fructose, but not galactose) in the absence of exogenous lactate can result in ATP dephosphorylation.  相似文献   

15.
1. By perfusion of rat livers with 3mm-AMP in the perfusion medium we obtain increased intracellular concentrations of AMP. 2. These high intracellular concentrations of AMP lead to an increased output of glucose and urea into the perfusion medium. 3. The increased output of glucose in livers from fed rats is brought about primarily by an AMP-stimulated breakdown of liver glycogen. In livers from starved rats the increase in glucose output is not as great, reflecting the low contents of glycogen in livers from starved rats. 4. AMP inhibits gluconeogenesis from lactate in perfused livers. In the presence of high concentrations of lactate, however, the counteracting effects of AMP to increase glycogenolysis and to inhibit gluconeogenesis result in little change in the net glucose output. 5. The increased urea output is brought about by increased breakdown of amino acids that are present in the perfusion medium. In livers from starved rats the overall urea production is much higher, indicating increased catabolism of amino acids and other nitrogenous substrates in the absence of carbohydrate substrates. 6. AMP causes an inhibition of incorporation of labelled precursors into protein and nucleic acid. This may result from increased catabolism of precursors of proteins and nucleic acids as reflected by the more rapid breakdown of nitrogenous compounds. In support of this hypothesis, cell-free systems for amino acid incorporation isolated from livers perfused with and without AMP are equally capable of supporting protein synthesis. 7. The labelling pattern of RNA in perfused livers corresponds very closely to those found by pulse-labelling in vivo. AMP in no way alters the qualitative nature of the labelling patterns. 8. We consider these results as supporting evidence for the role of the concentration ratio of AMP to ATP in controlling the metabolic pathways that lead to the formation of ATP.  相似文献   

16.
In rat hepatocytes, the basal glycogen synthase activation state is decreased in the fed and diabetic states, whereas glycogen phosphorylase a activity decreases only in diabetes. Diabetes practically abolishes the time- and dose-dependent activation of glycogen synthase to glucose especially in the fed state. Fructose, however, is still able to activate this enzyme. Glycogen phosphorylase response to both sugars is operative in all cases. Cell incubation with the combination of 20 mM glucose plus 3 mM fructose produces a great activation of glycogen synthase and a potentiated glycogen deposition in both normal and diabetic conditions. Using radiolabeled sugars, we demonstrate that this enhanced glycogen synthesis is achieved from both glucose and fructose even in the diabetic state. Therefore, the presence of fructose plays a permissive role in glycogen synthesis from glucose in diabetic animals. Glucose and fructose increase the intracellular concentration of glucose 6-phosphate and fructose reduces the concentration of ATP. There is a close correlation between the ratio of the intracellular concentrations of glucose 6-phosphate and ATP (G6-P/ATP) and the activation state of glycogen synthase in hepatocytes from both normal and diabetic animals. However, for any given value of the G6-P/ATP ratio, the activation state of glycogen synthase in diabetic animals is always lower than that of normal animals. This suggests that the system that activates glycogen synthase (synthase phosphatase activity) is impaired in the diabetic state. The permissive effect of fructose is probably exerted through its capacity to increase the G6-P/ATP ratio which may partially increase synthase phosphatase activity, rendering glycogen synthase active.  相似文献   

17.
Summary The mobilization of glycogen and phosphoarginine during work and their resynthesis during periods of recovery were investigated in abdominal muscles of the shrimpCrangon crangon. All parameters, metabolite levels as well as glycogen phosphorylase (EC 2.4.1.1) and synthase (EC 2.4.1.11) activities were determined in each individual shrimp investigated. At the onset of work both glycogen and phosphoarginine were degraded with the rate of phosphoarginine utilization being more than 80-fold faster than glycogen. After exhaustive work phosphoarginine stores were replenished within 30 min and seemed to exceed the resting level thereafter. In contrast, glycogen was not resynthesized immediately after work, but was further degraded during recovery leading to the accumulation of lactate. Only when the phosphagen level had reached the resting level did glycogenolysis shift to its resynthesis. The shift is characterized by: (1) a change in the mass action ratio of phosphoglucomutase from values below the equilibrium constant to values above the constant, (2) a dramatic decrease in the ratio fructose 1,6-bisphosphate/fructose 6-phosphate indicating phosphofructokinase inhibition, (3) an increase in the glucose concentration, and (4) an increase in the proportion of glycogen synthase I. The inactivation of glycogen phosphorylase by dephosphorylation during recovery was 2.4-fold. 36±8% (n=5) of total activity remained in the phosphorylated form. It is proposed that this part of the enzyme was inactivated by the drop in inorganic phosphate level due to the restoration of phosphoarginine.  相似文献   

18.
The aim of these studies was to investigate the effect of hyperglycemia with or without hyperinsulinemia on hepatic gluconeogenic flux, with the hypothesis that inhibition would be greatest with combined hyperglycemia/hyperinsulinemia. A glycogen phosphorylase inhibitor (BAY R3401) was used to inhibit glycogen breakdown in the conscious overnight-fasted dog, and the effects of a twofold rise in plasma glucose level (HI group) accompanied by 1) euinsulinemia (HG group) or 2) a fourfold rise in plasma insulin were assessed over a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion. In the HG group, net hepatic glucose uptake and net hepatic lactate output substantially increased. There was little or no effect on the net hepatic uptake of gluconeogenic precursors other than lactate (amino acids and glycerol) or on the net hepatic uptake of free fatty acids compared with the control group. Consequently, whereas hyperglycemia had little effect on gluconeogenic flux to glucose 6-phosphate (G-6-P), net hepatic gluconeogenic flux was reduced because of increased hepatic glycolytic flux during hyperglycemia. Net hepatic glycogen synthesis was increased by hyperglycemia. The effect of hyperglycemia on gluconeogenic flux to G-6-P and net hepatic gluconeogenic flux was similar. We conclude that, in the absence of appreciable glycogen breakdown, the increase in glycolytic flux that accompanies hyperglycemia results in decreased net carbon flux to G-6-P but no effect on gluconeogenic flux to G-6-P.  相似文献   

19.
1. Measurements were made of the activities of the four key enzymes involved in gluconeogenesis, pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.32), fructose 1,6-diphosphatase (EC 3.1.3.11) and glucose 6-phosphatase (EC 3.1.3.9), of serine dehydratase (EC 4.2.1.13) and of the four enzymes unique to glycolysis, glucokinase (EC 2.7.1.2), hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40), in livers from starved rats perfused with glucose, fructose or lactate. Changes in perfusate concentrations of glucose, fructose, lactate, pyruvate, urea and amino acid were monitored for each perfusion. 2. Addition of 15mm-glucose at the start of perfusion decreased the activity of pyruvate carboxylase. Constant infusion of glucose to maintain the concentration also decreased the activities of phosphoenolpyruvate carboxylase, fructose 1,6-diphosphatase and serine dehydratase. Addition of 2.2mm-glucose initially to give a perfusate sugar concentration similar to the blood sugar concentration of starved animals had no effect on the activities of the enzymes compared with zero-time controls. 3. Addition of 15mm-fructose initially decreased glucokinase activity. Constant infusion of fructose decreased activities of glucokinase, phosphofructokinase, pyruvate carboxylase, phosphoenolpyruvate carboxylase, glucose 6-phosphatase and serine dehydratase. 4. Addition of 7mm-lactate initially elevated the activity of pyruvate carboxylase, as also did constant infusion; maintenance of a perfusate lactate concentration of 18mm induced both pyruvate carboxylase and phosphoenolpyruvate carboxylase activities. 5. Addition of cycloheximide had no effect on the activities of the enzymes after 4h of perfusion at either low or high concentrations of glucose or at high lactate concentration. Cycloheximide also prevented the loss or induction of pyruvate carboxylase and phosphoenolpyruvate carboxylase activities with high substrate concentrations. 6. Significant amounts of glycogen were deposited in all perfusions, except for those containing cycloheximide at the lowest glucose concentration. Lipid was found to increase only in the experiments with high fructose concentrations. 7. Perfusion with either fructose or glucose decreased the rates of ureogenesis; addition of cycloheximide increased urea efflux from the liver.  相似文献   

20.
Insulin infusion through the portal vein immediately after a pulse of [3-14C]pyruvate in 24 hr starved rats enhanced the appearance of [14C]glucose at 2, 5 and 10 min and glucose specific activity at 1, 2 and 20 min in blood collected from the cava vein at the level of the suprahepatic veins. Insulin infusion for 5 min decreased liver pyruvate concentration and enhanced both liver and plasma lactate/pyruvate ratio, and it decreased the plasma concentration of all amino acids. When insulin was infused together with glucose, [14C]glucose levels and glucose specific activity decreased in blood but there was a marked increase in liver [14C]glycogen, glycogen specific activity and glycogen concentration, and an increase in liver lactate/pyruvate ratio. The effect of insulin plus glucose infusion on plasma amino acids concentration was smaller than that found with insulin alone. It is proposed that insulin effect enhancing liver gluconeogenesis is secondary to its effect either enhancing liver glycolysis which modifies the liver's cytoplasmic oxidoreduction state to its more reduced form, increasing liver amino acids consumption or both. In the presence of glucose, products of gluconeogenesis enhanced by insulin are diverted into glycogen synthesis rather than circulating glucose. This together with results of the preceding paper (Soley et al., 1985), indicates that glucose enhances liver glycogen synthesis from C3 units in the starved rat, the process being further enhanced in the presence of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号