首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Citrate permease gene expression in the plasmid-free Lactococcus lactis strains IL1403 and MG1363 was studied. The ability to transport citrate results in diacetyl and acetoin production in IL1403 but not in MG1363. Citrate lyase, α-acetolactate decarboxylase, diacetyl and acetoin reductase were detected in IL1403. These data show that L. lactis ssp. lactis strain IL1403 is a citrate permease mutant of the biovar. diacetylactis . Immunological analysis revealed the α-and β-subunits of citrate lyase not only in IL1403 but also in MG1363 where no citrate lyase activity was found.  相似文献   

2.
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

3.
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

4.
The role of ribonucleases in the control of gene expression remains unknown in lactic acid bacteria. In the present work, we analysed the expression of the citP gene, which encodes the lactococcal citrate permease P, through the stability of the citQRP messenger in both Lactococcus lactis biovar diacetylactis (L. diacetylactis) and Escherichia coli. The chemical half-life for citQRP mRNA observed in L. diacetylactis wild-type strain was abnormally long for bacteria. It was even longer than that detected in E. coli RNase E or RNase III mutant strains. A model of processing and fate of RNA species containing citP gene is presented.  相似文献   

5.
The citrate permease determinant (citP) in several Leuconostoc strains was demonstrated to be plasmid encoded by curing experiments and hybridization studies with a DNA fragment containing the citP gene from Lactococcus lactis subsp. lactis biovar diacetylactis NCDO176. Cloning and nucleotide sequence analysis of Leuconostoc lactis NZ6070 citP revealed almost complete identity to lactococcal citP.  相似文献   

6.
Abstract The kinetic analysis of citrate uptake in growing cells of Lactococcus lactis subsp. lactis biovar. diacetylactis identified a proton-dependent transport and suggested the divalent anionic species as the form of citrate transported across cell membranes. The reaction followed Michaelis-Menten kinetics for a two-substrate reaction. The limiting steps were the formation of the ternary complex and the rate of transport. Temperature modified the activity of the permease, increasing the uptake rate.  相似文献   

7.
The replication region of the 7.8 kilobase (kb) citrate plasmid pSL2 from Lactococcus lactis ssp. lactis biovar. diacetylactis Bu2 was identified. Deletion derivatives of pSL2 were introduced into plasmid-free strain Bu2-60 and tested for their ability to replicate autonomously. The region necessary for replication was identified by comparison of the pSL2 derivatives, cloned and sequenced. No homologies were detected by comparing the putative Rep protein of pSL2 with replicons of other plasmids of Gram-positive bacteria. A part of an IS-element flanking the replication region was found.  相似文献   

8.
Diacetyl is a by-product of pyruvate metabolism in Lactococcus lactis, where pyruvate is first converted to alpha-acetolactate, which is slowly decarboxylated to diacetyl in the presence of oxygen. L. lactis usually converts alpha-acetolactate to acetoin enzymatically, by alpha-acetolactate decarboxylase encoded by the aldB gene. We took advantage of the fact that this enzyme also has a central role in the regulation of branched-chain amino acids, to select spontaneous aldB mutants in an unbalanced concentration of leucine versus those of valine and isoleucine in the medium. Industrial dairy strains of L. lactis subsp. lactis biovar diacetylactis containing point mutations and deletions of aldB were isolated and characterized. Their growth in milk was not affected, but they rapidly accumulated a large amount of alpha-acetolactate instead of acetoin from citrate in milk. Under aerated condition, strains devoid of AldB produced about 10 times more diacetyl than did the parental strains.  相似文献   

9.
Citrate transport in Lactococcus lactis biovar diacetylactis (L. diacetylactis) is catalyzed by citrate permease P (CitP), which is encoded by the plasmidic citP gene. Two partial overlapping open reading frames citQ and citR are located upstream of citP. These two genes, together with citP, constitute the citQRPoperon. In this report it was shown that in L. diacetylactis and Escherichia coli, cit mRNA is subject to the same specific cleavages at a complex secondary structure which includes the central region of citQ and the 5'-end of citR. The role of ribonucleases in the fate of the cit mRNA processing was investigated in E. coli RNase mutant strains. The results obtained indicate that both endoribonucleases RNase E and RNase III are involved in the generation of mRNA processed species. RNase E is responsible for the major cleavages detected within citQ and upstream of citR, whereas RNase III cleaves citR within its ribosomal binding site. Preliminary results indicate the existence of a RNaselll-like enzyme in L. diacetylactis. Based on these results, a model for the role of cit mRNA processing in the expression of citP is presented.  相似文献   

10.
Abstract A gene which encodes resistance by abortive infection (Abi+) to bacteriophage was cloned from Lactococcus lactis ssp. lactis biovar. diacetylactis S94. This gene was found to confer a reduction in efficiency of plating and plaque size for prolate-headed bacteriophage φ53 (group I of homology) and total resistance to the small isometric-headed bacteriophage φ59 (group III of homology). The cloned gene is predicted to encode a polypeptide of 346 amino acid residues with a deduced molecular mass of 41 455 Da. No homology with any previously described genes was found. A probe was used to determine the presence of this gene in two strains on 31 tested.  相似文献   

11.
The metabolic fate of citrate and pyruvate in four strains of Lactococcus lactis subsp. lactis biovar diacetylactis has been studied by means of C nuclear magnetic resonance, using as a substrate either [3-C]pyruvic acid or custom-synthesized citric acid that is C labeled either at carbons 2 and 4 or at carbon 3. The fermentations were carried out batchwise in modified M17 broth. For the actual conversions of the C-labeled substrates, cells at the end of their logarithmic growth phase were used to minimize the conversion to lactic acid. A mass balance of the main citric acid metabolites was obtained; the four strains produced from 50 to 70% (on a molar basis) lactic acid from either citrate or pyruvate. The remaining 50 to 30% was converted mainly to either alpha-acetolactic acid (for one strain) or acetoin (for the other three strains). One of the strains produced an exceptionally high concentration of the diacetyl precursor alpha-acetolactic acid. Another strain (SDC6) also produced alpha-acetolactic acid, but this was decarboxylated to acetoin at a high rate. The C nuclear magnetic resonance method confirmed that the biosynthesis of alpha-acetolactic acid occurs via condensation of pyruvate and "active" acetaldehyde. Diacetyl was not found as a direct metabolite of citrate or pyruvate metabolism.  相似文献   

12.
13.
Two strains of Lactococcus lactis subsp. lactis (L. lactis KB and KBP) and one of L. lactis subsp. lactis biovar. diacetylactis (L. diacetylactis MD) were immobilized separately in kappa-carrageenan-locust bean gum gel beads. Continuous fermentations were carried out in supplemented whey permeate in a 1-L pH-controlled stirred tank reactor inoculated with a 30% (v/v) bead inoculum and a bead ratio of 55:30:15 for KB, KBP, and MD, respectively. The process demonstrated a high productivity and microbial stability during the 7-week continuous culture. Compared with previous experiments carried out with an inoculum bead ratio of 33:33:33 for KB, KBP, and MD beads, respectively, the modification of the inoculum bead ratio had apparently little effect on free and immobilized, total and specific populations. A dominant behavior of L. diacetylactis MD over the other strains of the mixed culture was observed both with free-cell populations in the effluent and with immobilized-cell populations. Additional experiments were carried out with other strain combinations for continuous inoculation-prefermentation of milk. The data also confirmed the dominance of L. diacetylactis during long-term continuous immobilized-cell fermentations. This dominance may be tentatively explained by the local competition involved in the development of the bead cross-contamination and in citrate utilization by L. diacetylactis strains. The gel beads demonstrated a high rheological stability during the 7-week continuous fermentation even at low KCl supplementation of the broth medium (25 mM KCl).  相似文献   

14.
The pyruvate metabolism of a Lactococcus lactis subsp. lactis biovar diacetylactis mutant deficient in alpha-acetolactate decarboxylase and its wild-type strain was studied during batch cultivations. A chemically defined medium was used containing glucose as carbon- and energy-source. The alpha-acetolactate decarboxylase deficiency had no effect on the specific growth rate. Addition of citrate was found to increase the specific growth rate of both strains under aerobic and anaerobic conditions. The product formation was monitored throughout the cultivations. The carbon- and redox-balances were within the accuracy of the experimental data. When citrate was added, alpha-acetolactate, diacetyl, and acetoin were formed, and aeration was shown to have a positive effect on the formation of these metabolites. By omitting lipoic acid (required for a functional pyruvate dehydrogenase complex) from the growth medium, a similar stimulatory effect on alpha-acetolactate, diacetyl, and acetoin formation was observed under aerobic conditions. The strain with impaired alpha-acetolactate decarboxylase activity accumulated alpha-acetolactate which resulted in an increased diacetyl formation compared to the wild-type strain, under aerobic and anaerobic conditions.  相似文献   

15.
Lactococcus lactis subsp. lactis biovar diacetylactis was grown as batch cultures on a chemically defined medium. No growth was observed when the cultures were sparged with pure nitrogen (1.3 l l-1 min-1) whereas the cultures displayed exponential growth in the presence of minute amounts of carbon dioxide (0.035 mol-% of the inlet gas). However, in the former case, the addition of citrate restored growth. This suggested that oxaloacetate required for aspartate biosynthesis can be formed by the carboxylation of pyruvate or by citrate catabolism. When the cultures were heavily sparged with nitrogen (2.6 l l-1 min-1), no growth was observed even in the presence of citrate. This indicated that growth in these conditions was repressed by the absence of carbon dioxide required in some other biosynthetic reaction than in the carboxylation of pyruvate leading to oxaloacetate/aspartate biosynthesis.  相似文献   

16.
17.
A method was developed to screen and isolate mutagenized Lactococcus lactis subsp. lactis biovar diacetylactis strains accumulating (alpha)-acetolactate. This compound is accumulated by (alpha)-acetolactate decarboxylase-deficient strains and undergoes spontaneous degradation into diacetyl on agar plates. The diacetyl produced is detected by a colorimetric reaction yielding a red halo around the colonies.  相似文献   

18.
19.
Abstract: The conjugative transposon Tn 919 was introduced at high frequency to L. lactis subsp. lactis biovar. diacetylactis 18-16 and transconjugants were screened for mutations in two chromosomally located genotypes; citrate metabolism and maltose utilization. A citrate negative mutant, lacking citritase activity, was isolated at a frequency of 1.18 × 10−4. The mutant, 18-16C5, contained a single copy of Tn 919 in a chromosomal location. A junction fragment of Tn 919 ::18-16C5 chromosomal DNA was cloned in Escherichia coli . Mutations in maltose metabolism were detected at a frequency of 4.0 × 10−4. No mutants were detected when Tn 919 was not introduced. Reversion to a Mal+ phenotype occurred at high frequency, but was not due to Tn 919 transposition.  相似文献   

20.
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号