首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.  相似文献   

2.
Divergent patterns of neural development in larval echinoids and asteroids   总被引:2,自引:0,他引:2  
The development and organization of the nervous systems of echinoderm larvae are incompletely described. We describe the development and organization of the larval nervous systems of Strongylocentrotus purpuratus and Asterina pectinifera using a novel antibody, 1E11, that appears to be neuron specific. In the early pluteus, the antibody reveals all known neural structures: apical ganglion, oral ganglia, lateral ganglia, and an array of neurons and neurites in the ciliary band, the esophagus, and the intestine. The antibody also reveals several novel features, such as neurites that extend to the posterior end of the larva and additional neurons in the apical ganglion. Similarly, in asteroid larvae the antibody binds to all known neural structures and identifies novel features, including large numbers of neurons in the ciliary bands, a network of neurites under the oral epidermis, cell bodies in the esophagus, and a network of neurites in the intestine. The 1E11 antigen is expressed during gastrulation and can be used to trace the ontogenies of the nervous systems. In S. purpuratus, a small number of neuroblasts arise in the oral ectoderm in late gastrulae. The cells are adjacent to the presumptive ciliary bands, where they project neurites with growth cone-like endings that interconnect the neurons. In A. pectinifera, a large number of neuroblasts appear scattered throughout the ectoderm of gastrulae. The cells aggregate in the developing ciliary bands and then project neurites under the oral epidermis. Although there are several shared features of the larval nervous systems of echinoids and asteroids, the patterns of development reveal fundamental differences in neural ontogeny.  相似文献   

3.
The development of nervous system (NS) in the non-feeding vestibula larva of the sea urchin, Holopneustes purpurescens, and the feeding echinopluteus larva of Hemicentrotus pulcherrimus was examined by focusing on fate during metamorphosis. In H. purpurescens, the serotonergic NS (SerNS) appeared simultaneously and independently in larval tissue and adult rudiment, respectively, from 3-day post-fertilization. In 4-day vestibulae, an expansive aboral ganglion (450 × 100 μm) was present in the larval mid region that extended axons toward the oral ectoderm. These axons diverged near the base of the primary podia. An axonal bundle connected with the primary podia and the rim of vestopore on the oral side. Thus, the SerNS of the larva innervated the rudiment at early stage of development of the primary podia. This innervation was short-lived, and immediately before metamorphosis, it disappeared from the larval and adult tissue domains, whereas non-SerNS marked by synaptotagmin remained. The NS of 1-month post-fertilization plutei of H. pulcherrimus comprised an apical ganglion (50 × 17 μm) and axons that extended to the ciliary bands and the adult rudiment (AR). A major basal nerve of serotonergic and non-serotonergic axons and a minor non-serotonergic nerve comprised the ciliary band nerve. In 3-month plutei, axonal connection among the primary podia in the neural folds completed. The SerNS never developed in the AR. Thus, there was distinctive difference between feeding- and non-feeding larvae of the above sea urchins with respect to SerNS and the AR.  相似文献   

4.
5.
Abstract. Antibodies against the echinoderm-specific neuropeptide S1 and against 5HT were used to examine the fate of the larval nervous system during metamorphosis in the ophiuroid Ophiactis resiliens . In contrast to most echinoderms, the onset of peptidergic and serotonergic expression was delayed to the advanced ophiopluteus stage, in particular for 5HT. In advanced ophioplutei, peptidergic immunoreactivity was located in simple fibres associated with the ciliated bands, a stomach nerve ring, and cells along the antero-lateral arms. 5HT immunoreactivity was concentrated in 2 oral ganglia in the adoral projections, located at the posterior rim of the mouth. Clusters of 5HT-positive cells were also found along the antero-lateral arms. The ophiopluteus lacked a serotonergic (or peptidergic) anterior ganglion. In echinoids, holothuroids, and crinoids, anterior ganglia are thought to have a sensory role in settlement and metamorphosis. Given that ophioplutei metamorphose in the plankton and that larval structures degenerate before settlement, the absence of apical ganglia correlates with the lack of a functional role for larval structures in substrate selection and settlement. Although most of the larval nervous system degenerated during metamorphosis, the adoral projections and associated oral ganglia appeared to be incorporated into the juvenile mouth, suggesting a potential role for larval neurons in contributing to oral neuronal structures in the adult. S1-positive neurons and fibres in the rudiment developed de novo and in parallel with development of the epineural canal. This structure gives rise to the primordia of the adult circumoral nerve ring and radial nerves, indicating that differentiation of the adult nervous system begins in the early stages of metamorphosis.  相似文献   

6.
7.
In adult echinoderms, the nervous system includes the ectoneural and hyponeural subsystems. The former has been believed to develop from the ectoderm, whereas the latter is considered to be mesodermal in origin. However, this view has not been substantially supported by embryological examinations. Our study deals with the developmental origin of the nervous system in the direct-developing sea cucumber Eupentacta fraudatrix. The rudiment of the adult nervous system develops from ectodermally derived cells, which ingress into the primary body cavity from the floor of the vestibule. At the earliest stages, only the rudiment of the ectoneural nerve ring is laid down. The radial nerve cords and tentacular nerves grow out from this subcutaneous rudiment. The ectoneural cords do not develop simultaneously but make their appearance in the following order: unpaired mid-ventral cord, paired dorsal lateral cords, and ventral lateral cords. These transitional developmental stages probably recapitulate the evolution of the echinoderm body plan. The holothurian hyponeural subsystem, as other regions of the metazoan nervous system, has an ectodermal origin. It originally appears as a narrow band of tissue, which bulges out of the basal region of the ectoneural neuroepithelium. Our data combined with those of other workers strongly suggest that the adult nervous tissue in echinoderms develops separately from the superficial larval system of ciliary nerves. Therefore, our data are neither in strict accordance with Garstang's hypothesis nor do they allow to refuse it. Nevertheless, in addition to ciliary bands, other areas of neurogenetic epidermis must be taken into account.  相似文献   

8.
Transformation of the gastrula to the pluteus includes development of the ability of the larva to control the direction of ciliary beat and coordinate activities of the ciliary band with activities of the esophageal muscles (48-60 h, 15 degrees C). Glyoxylic acid-induced fluorescence shows several cells of the animal plate to contain catecholamines in the 36-h gastrula. As the ectoderm thickens to form the ciliary band (36 48 h), the catecholamine-containing cells increase in number and occur dispersed throughout the band. Tissues with the ultrastructural characteristics of nerves first became apparent associated with the ciliary band in 60-h larvae. The coincident development of coordinated behaviour and the appearance of cells with ultrastructural and histochemical characteristics of nerves suggests that the larval nervous system is derived at least in part from cells of the animal plate and develops in association with the ciliary bands.  相似文献   

9.
The nervous system of the planktotrophic trochophore larva of Polygordius lacteus has been investigated using antibodies to serotonin (5-HT) and the neuropeptide FMRFamide. The apical ganglion contains three 5-HT-ir neurons, many FMRFamide-ir neurons and a tripartate 5-HT-ir and FMRFamide-ir neuropil. A lateral nerve extends from each side of the apical ganglion across the episphere and the ventral hyposphere, where the two nerves combine to form the paired ventral nerve cord. These nerves have both 5-HT-ir and FMRFamide-ir processes. Three circumferential nerves are associated with the ciliary bands: two prototroch and one metatroch nerve. All contain 5-HT-ir and FMRFamide-ir processes. An oral nerve plexus also contain both 5-HT-ir and FMRFamide-ir processes develops from the metatroch nerve, and an esophageal ring of FMRFamide-ir processes develops in later larval stages. In young stages the ventral ganglion contains two 5-HT-ir and two FMRFamide-ir perikarya; during development the ventral ganglion grows caudally and adds additional 5-HR-ir and FMRFamide-ir perikarya. These are the only perikarya that could be found along the lateral nerve and ventral nerve cord. The telotroch nerve develops from the ventral nerve cord. The 5-HT-ir and FMRFamide-ir part of the nervous system is strictly bilateral symmetric. and much of the system (i.e. apical ganglion, lateral nerves ventral nerve cord, dorsal nerve and oral plexus) is retained in the adult.  相似文献   

10.
The animal plate of the sea urchin embryo becomes the apical organ, a sensory structure of the larva. In the absence of vegetal signaling, an expanded and unpatterned apical organ forms. To investigate the signaling that restricts the size of the animal plate and patterns neurogenesis, we have expressed molecules that regulate specification of ectoderm in embryos and chimeras. Enhancing oral ectoderm suppresses serotonergic neuron differentiation, whereas enhancing aboral or ciliary band ectoderm increases differentiation of serotonergic neurons. In embryos in which vegetal signaling is blocked, Nodal expression does not reduce the size of the thickened animal plate; however, almost no neurons form. Expression of BMP in the absence of vegetal signaling also does not restrict the size of the animal plate, but abundant serotonergic neurons form. In chimeras in which vegetal signaling is blocked in the entire embryo, and one half of the embryo expresses Nodal, serotonergic neuron formation is suppressed in both halves. In similar chimeras in which vegetal signaling is blocked and one half of the embryo expresses Goosecoid (Gsc), serotonergic neurons form only in the half of the embryo not expressing Gsc. We propose that neurogenesis is specified by a maternal program that is restricted to the animal pole by signaling that is dependent on nuclearization of beta-catenin and specifies ciliary band ectoderm. Subsequently, neurogenesis in the animal plate is patterned by suppression of serotonergic neuron formation by Nodal. Like other metazoans, echinoderms appear to have a phase of neural development during which the specification of ectoderm restricts and patterns neurogenesis.  相似文献   

11.
Ultrastructural observations and glyoxilic acid-induced fluorescence of catecholamines indicate that tracts of axons lie at the base of the ciliary bands and run throughout their length in bipinnaria and brachiolaria larvae of Pisaster ochraceus. Two types of nerve cells occur at regular intervals within the ciliary bands. Type I nerve cells are associated with the axonal tracts, and type II nerve cells, which are ciliated, occur along the edge of the ciliary bands. Two prominent ganglia, which appear as accumulations of nerve cells and neuropile, occur on the lower lip of the larval mouth. Smaller ganglia occur irregularly throughout the ciliary band. Synapses were never clearly identified and were assumed to be unspecialized. Nervous tissues were also found associated with the esophageal muscles, the attachment organ, and the larval arms. Organization of the nervous system and its association with effectors suggest it controls swimming and feeding. Several similarities exist between the nervous systems of larval asteroids, larval echinoids, and adult echinoderms.  相似文献   

12.
The evolution of the serotonergic nervous system   总被引:12,自引:0,他引:12  
The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echinoderms and enteropneusts have numerous serotonergic neurons in the apical ganglion from which the ciliary band is innervated. This pattern of development is much like the pattern seen in lamprey embryos and larvae, which leads the author to conclude that the serotonergic raphe system found in vertebrates originated in the larval brain of deuterostome invertebrates. Further, the neural tube of chordates appears to be derived, at least in part, from the ciliary band of deuterostome invertebrate larvae. The evidence shows no sign of a shift in the dorsal ventral orientation within the line leading to the chordates.  相似文献   

13.
We examined deuterostome invertebrates, the sea urchin and amphioxus, and an extant primitive vertebrate, the lamprey, for the presence of structures expressing the HNK-1 carbohydrate and serotonin. In sea urchin embryos and larvae, HNK-1 positive cells were localized in the ciliary bands and in their precursor ectoderm. Serotonergic cells were exclusively observed in the apical organs. In juvenile amphioxus, primary sensory neurons in the dorsal nerve cords were HNK-1 immunoreactive. The juvenile amphioxus nerve cords contained anti-serotonin immunoreactive nerve fibers that seem to be the Rohde axons extending from amphioxus interneurons, the Rohde cells. In lamprey embryos, migrating neural crest cells and primary sensory neurons, including Rohon-Beard cells, expressed the HNK-1 carbohydrate. Lamprey larvae (ammocoetes) contained cell aggregates expressing both the HNK-1 carbohydrate and serotonin in the pronephros and in the regions adjacent to the gut epithelium. Some of these cell aggregates were present in the anti-serotonin positive visceral motor nerve net. Motor neurons and Müller fibers were serotonergic in ammocoetes. Comparison of the expression patterns of HNK-1 carbohydrate among sea urchins, amphioxus and lampreys seem to suggest the possible evolutionary origin of the neural crest, that is, ciliary bands in dipleurula-type ancestors evolved into primary sensory neurons in chordate ancestors, as inferred from Garstang's auricularia hypothesis, and the neural crest originated from the primary sensory neurons.  相似文献   

14.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

15.
Echinoderm larvae share numerous features of neuroanatomy. However, there are substantial differences in specific aspects of neural structure and ontogeny between the dipleurula-like larvae of asteroids and the pluteus larvae of echinoids. To help identify apomorphic features, we have examined the ontogeny of the dipleurula-like auricularia larva of the sea cucumber, Holothuria atra. Neural precursors arise in the apical ectoderm of gastrulae and appear to originate in bilateral clusters of cells. The cells differentiate without extensive migration, and they align with the developing ciliary bands and begin neurogenesis. Neurites project along the ciliary bands and do not appear to extend beneath either the oral or aboral epidermis. Apical serotonergic cells are associated with the preoral loops of the ciliary bands and do not form a substantial commissure. Paired, tripartite connectives form on either side of the larval mouth that connect the pre-oral, post-oral, and lateral ciliary bands. Holothurian larvae share with hemichordates and bipinnariae a similar organization of the apical organ, suggesting that the more highly structured apical organ of the pluteus is a derived feature. However, the auricularia larva shares with the pluteus larva of echinoids several features of neural ontogeny. Both have a bilateral origin of neural precursors in ectoderm adjacent to presumptive ciliary bands, and the presumptive neurons move only a few cell diameters before undergoing neurogenesis. The development of the holothurian nervous systems suggests that the extensive migration of neural precursors in asteroids is a derived feature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Ciliary and nerve structures were described in juvenile female Dinophilus gyrociliatus (O. Schmidt, 1848) after immunochemical staining with tubulin, serotonin, and FMRFamide antibodies. Anti-tubulin antibodies revealed the following external structures: two head and seven body ciliary bands, a ventral ciliary band, and head ciliary fields. Gut cilia and five pairs of protonephridia were detected inside the body. The nervous system consists of an oval headed neuropile with anterior and posterior nerves extending from it, seven longitudinal nerve cords, commissures, and circular nerves. Anti-serotonin antibodies revealed the head neuropile, neurons at the base of the ventral ciliary band, an oesophageal ring, and seven longitudinal ventral cords. Anti-FMRFamide antibodies revealed approximately ten neurons in the cerebral ganglion, five longitudinal cords, and the oesophageal and caudal-nerve rings. The presented data suggest the simplification of the nervous system structure in D. gyrociliatus, which probably reflects pedomorphosis.  相似文献   

17.
The ciliary band is a distinct region of embryonic ectoderm that is specified between oral and aboral ectoderm. Flask-shaped ciliary cells and neurons differentiate in this region and they are patterned to form an integrated tissue that functions as the principal swimming and feeding organ of the larva. TGFβ signaling, which is known to mediate oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation. We have used morpholino knockdown and ectopic expression of RNA to alter TGFβ signaling at the level of ligands, receptors, and signal transduction components and assessed the differentiation and patterning of the ciliary band cells and associated neurons. We propose that the primary effects of these signals are to position the ciliary cells, which in turn support neural differentiation. We show that Nodal signaling, which is known to be localized by Lefty, positions the oral margin of the ciliary band. Signaling from BMP through Alk3/6, affects the position of the oral and aboral margins of the ciliary band. Since both Nodal and BMP signaling produce ectoderm that does not support neurogenesis, we propose that formation of a ciliary band requires protection from these signals. Expression of BMP2/4 and Nodal suppress neural differentiation. However, the response to receptor knockdown or dominant-negative forms of signal transduction components indicate signaling is not acting directly on unspecified ectoderm cells to prevent their differentiation as neurons. Instead, it produces a restricted field of ciliary band cells that supports neurogenesis. We propose a model that incorporates spatially regulated control of Nodal and BMP signaling to determine the position and differentiation of the ciliary band, and subsequent neural patterning.  相似文献   

18.
Development of the larval serotonergic nervous system is examined by indirect immunofluorescence in two congeneric species of sea urchins that exhibit divergent embryonic and larval development. Heliocidar is tuberculata undergoes indirect planktotrophic development via a pluteus larva, whereas Heliocidaris erythrogramma develops directly, passing through a brief, highly derived lecithotrophic larval stage. We have cleared the opaque embryos of H. erythrogramma and discuss internal features of its development. The serotonergic nervous system of H. tuberculata arises in the apical plate at the end of gastrulation and develops into a bilaterally symmetric ganglion lying between the anterolateral arms in the preoral hood. Putatively homologous neurons appear at the apical end of the modified larva of H. erythrogramma well after the completion of gastrulation, coincident with development of the primary podia of the adult rudiment. The neurons form a bilaterally symmetric ganglion whose orientation relative to the vestibule is conserved with respect to that found in planktotrophic larvae. This allows us to define a left and right side for this larva which lacks external points of asymmetry such as a larval mouth. The alteration in the time of nervous system development in H. erythrogramma relative to that of H. tuberculata , and other indirect developers, implicates heterochronies in cellular differentiation as an important component of the evolution of direct development.  相似文献   

19.

Background

Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context.

Results

After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia.

Conclusions

Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct ciliary band muscle and flask-shaped epidermal serotonergic cells of the apical organ. Based on current phylogenies, the distribution of ciliary bands and apical organs between polyclads and other spiralians is not congruent with a hypothesis of homology. However, some similarities exist, and this study sets an anatomical framework from which to investigate cellular and molecular mechanisms that will help to distinguish between parallelism, convergence and homology of these features.  相似文献   

20.
We report scanning and transmission electron microscopic studies of the early development of the Hawaiian acorn worm, Ptychodera flava. In addition, we provide an immunohistochemical identification of the larval nervous system. Development occurs and is constrained within the stout chorion and fertilization envelope that forms upon the release of the cortical granules in the cytoplasm of the egg. The blastula consists of tall columnar blastomeres encircling a small blastocoel. Typical gastrulation occurs and a definitive tornaria is formed compressed within the fertilization envelope. The young tornaria hatches at 44 hr and begins to expand. The major circumoral ciliary band that crosses the dorsal surface and passes preorally and postorally is well developed. In addition, we find a nascent telotroch, as well as a midventral ciliary band that is already clearly developed. The epithelium of tornaria is a mosaic of monociliated and multiciliated cells. Immunohistochemistry with a novel neural marker, monoclonal antibody 1E11, first detects nerve cells at the gastrula stage. In tornaria, 1E11 staining nerve cells occur throughout the length of the ciliary bands, in the apical organ, in a circle around the mouth, in the esophageal epithelium and in circumpylorus regions. Axon(s) and apical processes extend from the nerve cell bodies and run in tracks along the ciliary bands. Axons extending from the preoral and postoral bands extend into the oral field and form a network. The tornaria nervous system with ciliary bands and an apical organ is rather similar to the echinoderm bipinnaria larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号