首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Harmful algal blooms (HABs) may be legitimate targets for direct control or mitigation, due to their impacts on commercial fisheries and public health. One promising control strategy is the rapid sedimentation of HABs through flocculation with clay. The objective of this study was to evaluate flow environments in which such a control strategy might be effective in removing harmful algae from the water column and depositing a layer of clay/algal flocs on the sea floor. We simulated the natural environment in two laboratory flumes: a straight-channel “17 m flume” in which flocs settled in a still-water column and a “racetrack flume” in which flocs settled in flow. The 17 m flume experiments were designed to estimate the critical bed shear stress for resuspension of flocs that had settled for different time periods. The racetrack flume experiments were designed to examine the deposition and repeated resuspension of flocs in a system with tidal increases in flow speed. All flume runs were conducted with the non-toxic dinoflagellate Heterocapsa triquetra and phosphatic clay (IMC-P4). We repeated the experiments with a coagulant, polyaluminum hydroxychloride (PAC), expected to enhance the removal efficiency (RE) of the clay. Our experiments indicated that at low flow speeds (≤10 cm s−1), phosphatic clay was effective at removing algal cells from the water column, even after repeated resuspension. Once a layer of flocs accumulated on the bed, the consolidation, or dewatering, of the layer over time increased the critical shear stress for resuspension (i.e. decreased erodibility). Resuspension of a 2 mm thick layer that settled for 3 h in relatively low flow speeds (≤3 cm s−1) would be expected at bed shear stress of 0.06–0.07 Pa, as compared to up to 0.09 Pa for a layer that was undisturbed for 9 or 24 h. For the same experimental conditions, the addition of PAC decreased the removal efficiency of algal cells in flow and increased the erodibility of flocs from the bottom. By increasing the likelihood that flocs remain in suspension, the addition of PAC in field trials of clay dispersal might have greater impact on sensitive, filter-feeding organisms. Overall, our experiments suggest that the flow environment should be considered before using clay as a control strategy for HABs in coastal waters.  相似文献   

2.
Harmful algal blooms (HABs) occur worldwide causing serious threat to marine life, and to public health through seafood-borne illnesses and exposure to toxin-containing marine aerosol. This study was undertaken to assess the ability of phosphatic clay to remove the toxic dinoflagellate, Karenia brevis, and the potent neurotoxins (brevetoxins) produced by this species. Results showed that the addition of an aqueous slurry of 0.75 g (dry weight) clay to 3 l of K. brevis culture, containing 5×106 and 10×106 cells/l, removed 97±4% of brevetoxins from the water column within 4 h after the addition of clay. Clay flocculation of extra-cellular brevetoxins, released from cells ruptured (lyzed) by ultrasonication, removed 70±10% of the toxins. Addition of the chemical flocculant, polyaluminum chloride (PAC), removed all of the extra-cellular toxins. A 14 day study was undertaken to observe the fate of brevetoxins associated with clay flocculation of viable K. brevis cells. At 24 h following the clay addition, 90±18% of the toxins were removed from the water column, along with 85±4% of the cells. The toxin content of clay diminished from 208±13 μg at Day 1, to 121±21 μg at Day 14, indicating that the phosphatic clay retained about 58% of the toxins throughout the 14-day period. These studies showed the utility of natural clay as a means of reducing adverse effects from HABs, including removal of dissolved toxins, in the water column, although considerable work clearly remains before this approach can be used on natural blooms in open waters.  相似文献   

3.
Harmful algal blooms (HABs) resulting in red discoloration of coastal waters in Sepanggar Bay, off Kota Kinabalu, Sabah, East Malaysia, were first observed in January 2005. The species responsible for the bloom, which was identified as Cochlodinium polykrikoides, coincided with fish mortalities in cage-cultures. Determinations of cell density between January 2005 and June 2006 showed two peaks that occurred in March–June 2005 and June 2006. Cell abundance reached a maximum value of 6 × 106 cells L−1 at the fish cage sampling station where the water quality was characterized by high NO3–N and PO4–P concentrations. These blooms persisted into August 2005, were not detected during the north–east monsoon season and occurred again in May 2006. Favorable temperature, salinity and nutrient concentrations, which were similar to those associated with other C. polykrikoides blooms in the Asia Pacific region, likely promoted the growth of this species. Identification of C. polykrikoides as the causative organism was based on light and scanning microscopy, and confirmed by partial 18S ribosomal DNA sequences of two strains isolated during the bloom event (GenBank accession numbers DQ915169 and DQ915170).  相似文献   

4.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

5.
Red tides dominated by the harmful dinoflagellate Cochlodinium polykrikoides have caused annual losses of USD $5–60 million to the Korean aquaculture industry annually since 1995 and a loss of USD $3 million during a 1999 net-pen fish mortality event in Canada. In order to evaluate the potential to control C. polykrikoides red tides dominated by using mass-cultured heterotrophic protistan grazers, we monitored the abundance of Strombidinopsis jeokjo (a naked ciliate) and C. polykrikoides after mass-cultured S. jeokjo was introduced into mesocosms (ca. 60 l) deployed in situ and containing natural red tide waters dominated by C. polykrikoides. Water temperature, salinity, and pH, as well as the abundance of co-occurring other protists and metazooplankton were measured concurrently. To compare the growth and ingestion rates of S. jeokjo feeding on cultured versus natural populations of C. polykrikoides, we also monitored the abundance of cultured C. polykrikoides and S. jeokjo in bottles during laboratory grazing experiments. S. jeokjo introduced into the mesocosms grew well, effectively reducing natural populations of C. polykrikoides from approximately 1000 cells ml−1 to below 10 cells ml−1 within 2 days. The growth and ingestion rates of cultured S. jeokjo on natural populations of C. polykrikoides in the mesocosms for the first 30 h (0.72 day−1 and 51 ng C grazer−1 day−1) were 84% and 44%, respectively, of those measured in the laboratory during bottle incubations with similar initial prey concentrations. The calculated grazing impact of S. jeokjo on natural populations of C. polykrikoides suggests that large-scale cultures of this ciliate could be used for controlling red tides by C. polykrikoides in small areas.  相似文献   

6.
The dinoflagellate, Cochlodinium polykrikoides Margalef, has been responsible for mass mortalities of both wild and farmed fish along the Korean coast on virtually an annual basis since 1982. Economic impacts to the fishing and aquaculture industries are extensive, with a loss of USD $95 million reported in 1995 alone. The use of taxon-specific molecular probes for harmful algal species is recognized as a promising approach for the early detection of bloom formation and as part of an effective mitigation strategy. We have developed and successfully applied large subunit ribosomal RNA (LSU rRNA)-targeted probes in both whole cell and sandwich hybridization assay (SHA) formats for the species-specific detection of C. polykrikoides in Korean coastal waters. Sequences of the D1–D3 variable regions used to design probes were identical between five Korean and one Hong Kong C. polykrikoides isolates, while sequences for several N. American Cochlodinium isolates differed to varying degrees from the former. The automated SHA detected C. polykrikoides at levels as low as 1–3 cells/L in the field, demonstrating its suitability for detecting the target species at pre-bloom concentrations. This method should thus prove valuable to existing monitoring programs aimed at providing aquaculture interests with an early warning of frequently devastating bloom events.  相似文献   

7.
Eco-physical conditions for the initiation and termination of Cochlodinium polykrikoides blooms in the South Sea of Korea are examined in this paper. The C. polykrikoides blooms generally occur in the sea near Naro-Do in late August every year. The submarine canyon near Naro-Do plays an important role in surface water intrusion from the open ocean driven by northeasterly winds. In late August, the monsoonal wind system in Korea changes from southwesterly to northeasterly winds, causing Ekman transport of warm, fresh Changjiang Diluted Water (CDW) into the sea near Naro-Do and creating a front between inland sea water and CDW. Along the front, aggregation of single C. polykrikoides cells in the CDW and downwelling yield favorable eco-physical conditions for development of C. polykrikoides blooms. When typhoons and strong northeasterly winds bring vertically well-mixed East China Sea water into the sea near Naro-Do again in September, the eco-physical conditions favor diatom growth and lead to the termination of C. polykrikoides blooms.  相似文献   

8.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

9.
Effects of irradiance and iron on the growth of a typical harmful algal blooms (HABs) causative dinoflagellate, Scrippsiella trochoidea, were investigated under various irradiances (high light: 70 μmol m?2 s?1 and low light: 4 μmol m?2 s?1) and iron concentrations (low iron: 0.063 mg L?1, medium iron: 0.63 mg L?1 and high iron: 6.3 mg L?1), and evaluated by the parameters of algal cell density, specific growth rate, optical density and chlorophyll a content. The results indicated that there was significant difference in the cell density of dinoflagellate S. trochoidea between high light and low light intensity treatments across the entire experiments, 7-fold higher at high irradiance as compared with low irradiance, which was further enhanced by the iron concentration. It was found that the maximum cell density of 25 × 104 cell mL?1 occurred under the combination of high light intensity and high iron concentration, followed by 23 × 104 cell mL?1 in the combination of high light and medium iron, and 20 × 104 cell mL?1 in the combination of high light and low iron. There was no significant effect of iron concentration on the cell density under low light intensity. The cell density maintained about 3 × 104 cell mL?1 across all combinations of iron concentrations and low light in the end of experiments. Such interactive effects of light intensity and iron level dependent were also observed for the specific growth rate, OD680 and chlorophyll a content of S. trochoidea. The maximum values of specific growth rate, OD680 and chlorophyll a content peaked at the condition of high irradiance and high iron, which were 0.22 d?1, 0.282 and 0.673 mg L?1, respectively. In general, their values increased significantly with the increasing of iron concentration at high irradiance, whereas no significant difference was observed among three iron concentrations at low irradiance, all remaining approximately 0.06 d?1, 0.03 and 0.050 mg L?1, respectively. Those results suggest that there may be a strong interactive effect between irradiance and iron on microalgal growth and their physiological characteristics. The combination of high light and high iron concentration may accelerate algal cell growth and pigment biosynthesis, thus leading to massive occurrence of HABs.  相似文献   

10.
Cai Z P  Huang W W  An M  Duan S S 《农业工程》2009,29(5):297-301
Effects of irradiance and iron on the growth of a typical harmful algal blooms (HABs) causative dinoflagellate, Scrippsiella trochoidea, were investigated under various irradiances (high light: 70 μmol m?2 s?1 and low light: 4 μmol m?2 s?1) and iron concentrations (low iron: 0.063 mg L?1, medium iron: 0.63 mg L?1 and high iron: 6.3 mg L?1), and evaluated by the parameters of algal cell density, specific growth rate, optical density and chlorophyll a content. The results indicated that there was significant difference in the cell density of dinoflagellate S. trochoidea between high light and low light intensity treatments across the entire experiments, 7-fold higher at high irradiance as compared with low irradiance, which was further enhanced by the iron concentration. It was found that the maximum cell density of 25 × 104 cell mL?1 occurred under the combination of high light intensity and high iron concentration, followed by 23 × 104 cell mL?1 in the combination of high light and medium iron, and 20 × 104 cell mL?1 in the combination of high light and low iron. There was no significant effect of iron concentration on the cell density under low light intensity. The cell density maintained about 3 × 104 cell mL?1 across all combinations of iron concentrations and low light in the end of experiments. Such interactive effects of light intensity and iron level dependent were also observed for the specific growth rate, OD680 and chlorophyll a content of S. trochoidea. The maximum values of specific growth rate, OD680 and chlorophyll a content peaked at the condition of high irradiance and high iron, which were 0.22 d?1, 0.282 and 0.673 mg L?1, respectively. In general, their values increased significantly with the increasing of iron concentration at high irradiance, whereas no significant difference was observed among three iron concentrations at low irradiance, all remaining approximately 0.06 d?1, 0.03 and 0.050 mg L?1, respectively. Those results suggest that there may be a strong interactive effect between irradiance and iron on microalgal growth and their physiological characteristics. The combination of high light and high iron concentration may accelerate algal cell growth and pigment biosynthesis, thus leading to massive occurrence of HABs.  相似文献   

11.
The partial sequences of the large subunit (24S) ribosomal RNA gene(LsurRNA) of three Alexandrium catenella strains isolatedduring the 1998 and 1989 red tide incidents in Hong Kong were compared,togetherwith the sequences of other Asian A. catenella speciescomplex. The sequences of two A. catenella strainsisolatedin 1998 were identical, despite being isolated at different time (March andApril) and different locations (eastern and southern Hong Kong). In cladisticanalysis, the two A. catenella HK98A & B strains, theA. catenella HK1989 strain, the Chinese strain clade andtheKorean/Japanese A. catenella form a clade distinct fromother A. catenella strains. Interestingly, the twoA. catenella HK98A & B strains only form a clade withtheA. catenella HK1989 strain/ChineseA. catenella (CCMP1493) with low bootstrap values (49%).  相似文献   

12.
Toxic algal blooms are common world-wide and pose a serious problem to the aquaculture and fishing industries. Dinoflagellate species such as Karenia brevis, Karenia mikimotoi, Heterosigma akashiwo and Chatonella cf. antiqua are recognised toxic species implicated in various faunal mortalities. Toxic blooms of Karenia cristata were observed on the south coast of South Africa for the first time in 1988 and were responsible for mortalities of wild and farmed abalone. K. cristata and various other dinoflagellate species common along the South African coast, as well as K. mikimotoi (Isolation site: Norway, Univ. of Copenhagen) and K. brevis (Isolation site: Florida, BIGELOW), were tested for toxicity by means of a bioassay involving Artemia larvae as well as abalone larvae and spat. K. cristata, like K. brevis, contains an aerosol toxin; however, the toxin present in K. cristata has not yet been isolated and remains unknown. K. brevis was, therefore, used to determine which developmental phase of the bloom would affect abalone farms most, and whether ozone could be used as an effective mitigating agent. Of the 17 dinoflagellate species tested, K. cristata, Akashiwo sanguinea, K. mikimotoi and K. brevis pose the greatest threat to the abalone mariculture industry. K. brevis was most toxic during its exponential and stationary phases. Results suggest that ozone is an effective mitigation agent but its economic viability for use on abalone farms must still be investigated.  相似文献   

13.
Cyanobacterial harmful algal blooms (CHABs) degrade water quality and may produce toxins. The distribution of CHABs can change rapidly due to variations in population dynamics and environmental conditions. Biological and ecological aspects of CHABs were studied in order to better understand CHABs dynamics. Field experiments were conducted near Hartington, Ontario, Canada in ponds dominated by Microcystis aeruginosa and CHABs floating experiments were conducted at Lake Taihu during the summers of 2015 and 2016. Single colonies composed of hundreds to thousands of cells with an average median of 0.2–0.5 mm in diameter were the basic form assumed by the Microcystis, and this remained the same throughout the growing season. Thorough mixing of the water column followed by calm conditions resulted in over 90% of the cyanobacteria floating after 1 h. Multiple colonies floated on the water surface in four types of assemblages: aggregates, ribbons, patches, and mats. It is the mats that are conventionally considered the blooming stage of cyanobacteria.Presence of CHABs on open water surfaces also depends on environmental influences such as direct and indirect wind effects. For example, field tests revealed that the surface coverage of CHABs can be reduced to half within an hour at wind speeds of 0.5 m/s.Because our findings indicated that blooming involves surface display of cyanobacteria essentially presenting as a two-dimensional plane under defined conditions, the use of surface imagery to quantify CHABs was justified. This is particularly important in light of the fact that traditional detection methods do not provide accurate distribution information. Nor do they portray CHABs events in a real-time manner due to limitations in on-demand surveillance and delays between sample time and analyzed results. Therefore, a new CHAB detection method using small unmanned aerial systems with consumer-grade cameras was developed at a maximum detection altitude of 80 m. When cyanobacteria were floating on the surface, CHABs detection through RGB band cameras and spectral enhancement techniques was efficient and accurate. Small unmanned aerial systems were capable of providing coverage up to 1 km2 per mission and the short intervals between sampling and results (approx. 2 h) allowed for the rapid analysis of data and for implementing follow-up monitoring or treatments. This method is very cost-effective at an estimate of as low as $100 CAD per mission with an average cyanobacterial detection accuracy of 86%. Thus, it is a good candidate method to fill the urgent need for CHABs detection, providing cost effective, rapid, and accurate information to improve risk management at a local level as well as to help quickly allocate resources for purposes of mitigation.  相似文献   

14.
固定化微生物技术作为一种新型的生物修复技术,具有高效、稳定、生物安全性较高等特点,已经广泛应用于各种污染水体的净化修复之中,也包括受污染日益严峻的近海养殖水体。综述从固定化微生物技术的出现和应用出发,对不同固定方法的优劣及其所擅长降解的污染物类型进行对比,对不同载体的特点进行分析,总结了固定化微生物技术在近海养殖水体污染修复的研究概况,并对当前该技术应用存在的问题进行分析和未来研究的方向进行展望。  相似文献   

15.
16.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

17.
Using shipboard data collected from the central west Florida shelf (WFS) between 2000 and 2001, an optical classification algorithm was developed to differentiate toxic Karenia brevis blooms (>104 cells l−1) from other waters (including non-blooms and blooms of other phytoplankton species). The identification of K. brevis blooms is based on two criteria: (1) chlorophyll a concentration ≥1.5 mg m−3 and (2) chlorophyll-specific particulate backscattering at 550 nm ≤ 0.0045 m2 mg−1. The classification criteria yielded an overall accuracy of 99% in identifying both K. brevis blooms and other waters from 194 cruise stations. The algorithm was validated using an independent dataset collected from both the central and south WFS between 2005 and 2006. After excluding data from estuarine and post-hurricane turbid waters, an overall accuracy of 94% was achieved with 86% of all K. brevis bloom data points identified successfully. Satisfactory algorithm performance (88% overall accuracy) was also achieved when using underway chlorophyll fluorescence and backscattering data collected during a repeated alongshore transect between Tampa Bay and Florida Bay in 2005 and 2006. These results suggest that it may be possible to use presently available, commercial optical backscattering instrumentation on autonomous platforms (e.g. moorings, gliders, and AUVs) for rapid and timely detection and monitoring of K. brevis blooms on the WFS.  相似文献   

18.
Along-shore currents can propagate harmful algal blooms (HABs) over long distances in many coastal areas of the ocean. Harmful dinoflagellate blooms on the west coast of Iberia frequently occur when the Iberian poleward current (IPC) establishes on the continental slope. This has led to the suggestion that HABs could be transported northward by the IPC. To examine this possibility, the microplankton composition along the west coast of Iberia was studied in May 1993 coinciding with the presence of the IPC. The microplankton of the IPC was almost exclusively composed of small flagellates, with the notable absence of the harmful species usually associated with coastal waters. The primary influence of the IPC was to confine coastal microplankton populations to the shelf, where a downwelling convergence prevented their export from the coastal environment. Microplankton assemblages on the shelf revealed a north–south gradient related to different stages of succession. Earlier stages of succession in which diatoms were prominent were found on the northern shelf, whereas dinoflagellates were more abundant in the south. The toxic species Gymnodinium catenatum, which was only present in the southern shelf, did not show a northward transport associated with the IPC. It is suggested that the northward spreading of HABs along the west coast of Iberia must be related to the interaction between the IPC, which accumulates coastal populations on the shelf, and the latitudinal progress of microplankton succession that determines species composition. Thus, during the course of the season, HABs are likely to be observed in the south prior to their development in the north.  相似文献   

19.
The morphology of an unarmored chain-forming harmful dinoflagellate Cochlodinium polykrikoides and its similar species such as Cochlodinium catenatum, Cochlodinium fulvescens, and Cochlodinium convolutum was carefully observed, emphasizing the single cell stage for clarifying taxonomically important morphological features. To differentiate C. polykrikoides from C. convolutum, the shape and the position of the nucleus are useful characters. C. polykrikoides also differs from C. fulvescens in being smaller in size, possessing many rod-shaped chloroplasts and having the sulcus running just below the cingulum on the dorsal surface. Careful observation of the ichnotype of C. catenatum suggests that C. catenatum sensu Kofoid and Swezy collected from off La Jolla, CA, USA, is not identical to C. catenatum sensu Okamura and is probably a different species, in having no chloroplasts and a nucleus positioned at the center of the cell. In addition, C. polykrikoides has many morphological features in common with C. catenatum sensu Okamura except for slightly elongate cells and is probably a junior synonym of this species.  相似文献   

20.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号