首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1   总被引:15,自引:0,他引:15  
Flagellar motors of some alkalophilic Bacillus strains have been suggested to be powered by the electrochemical potential gradient of Na+, namely the (formula: see text) (Hirota, N., Kitada, M., and Imae, Y. (1981) FEBS Lett. 132, 278-280). In the present study, we quantitatively measured the (formula: see text) and motility of one of the strains, YN-1. Swimming speed of YN-1 cells increased linearly with a logarithmic increase of Na+ concentration in the medium up to 100 mM. The intracellular Na+ concentration and the membrane potential of the cell were about 30 mM and -170 mV, respectively, and stayed constant irrespective of Na+ concentration in the medium. Thus, the swimming speed changed as a function of the chemical potential difference of Na+ across the cell membrane. When the membrane potential of YN-1 cells was decreased by a combination of valinomycin and various concentrations of K+ in the medium, the swimming speed of the cells decreased linearly and reached zero at around -90 mV. Under the condition, the intracellular Na+ concentration stayed constant. Thus, the membrane potential was also a determinant of the swimming speed. Furthermore, the chemical potential of Na+ and the membrane potential were found to be equivalent as the energy source for motility. Therefore, it is concluded that the (formula: see text) is the energy source for the flagellar motors of YN-1 cells. Threshold value of the (formula: see text) for motility was about -100 mV.  相似文献   

2.
Sodium-coupled motility in a swimming cyanobacterium.   总被引:7,自引:2,他引:5       下载免费PDF全文
The energetics of motility in Synechococcus strain WH8113 were studied to understand the unique nonflagellar swimming of this cyanobacterium. There was a specific sodium requirement for motility such that cells were immotile below 10 mM external sodium and cell speed increased with increasing sodium levels above 10 mM to a maximum of about 15 microns/s at 150 to 250 mM sodium. The sodium motive force increased similarly with increasing external sodium from -120 to -165 mV, but other energetic parameters including proton motive force, electrical potential, the proton diffusion gradient, and the sodium diffusion gradient did not show such a correlation. Over a range of external sodium concentrations, cell speed was greater in alkaline environments than in neutral or acidic environments. Monensin and carbonyl cyanide m-chlorophenylhydrazone inhibited motility and affected components of sodium motive force but did not affect ATP levels. Cells were motile when incubated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and arsenate, which decreased cellular ATP to about 2% of control values. The results of this investigation are consistent with the conclusion that the direct source of energy for Synechococcus motility is a sodium motive force and that below a threshold of about -100 mV, cells are immotile.  相似文献   

3.
The bacterial flagellar motor is a molecular machine that converts ion flux across the membrane into flagellar rotation. The coupling ion is either a proton or a sodium ion. The polar flagellar motor of the marine bacterium Vibrio alginolyticus is driven by sodium ions, and the four protein components, PomA, PomB, MotX, and MotY, are essential for motor function. Among them, PomA and PomB are similar to MotA and MotB of the proton-driven motors, respectively. PomA shows greatest similarity to MotA of the photosynthetic bacterium Rhodobacter sphaeroides. MotA is composed of 253 amino acids, the same length as PomA, and 40% of its residues are identical to those of PomA. R. sphaeroides MotB has high similarity only to the transmembrane region of PomB. To examine whether the R. sphaeroides motor genes can function in place of the pomA and pomB genes of V. alginolyticus, we constructed plasmids including both motA and motB or motA alone and transformed them into missense and null pomA-paralyzed mutants of V. alginolyticus. The transformants from both strains showed restored motility, although the swimming speeds were low. On the other hand, pomB mutants were not restored to motility by any plasmid containing motA and/or motB. Next, we tested which ions (proton or sodium) coupled to the hybrid motor function. The motor did not work in sodium-free buffer and was inhibited by phenamil and amiloride, sodium motor-specific inhibitors, but not by a protonophore. Thus, we conclude that the proton motor component, MotA, of R. sphaeroides can generate torque by coupling with the sodium ion flux in place of PomA of V. alginolyticus.  相似文献   

4.
Bacterial cells in aquatic environments are able to reach or stay near nutrient patches by using motility. Motility is usually attained by rotating flagellar motors that are energized by electrochemical potential of H+ or Na+. In this paper, the ion specificity for flagellar rotation of two marine isolates Halomonas spp. strains US172 and US201 was investigated. Both isolates require sodium for growth and possess a respiratory-driven primary sodium pump. They are motile because of lateral flagella regardless of the presence of sodium ions. Their swimming speed under various concentrations of sodium ions with and without carbonylcyanide m-chlorophenylhydrazone, a proton conductor, and with and without phenamil, a specific inhibitor for the sodium-driven flagellar motors, was examined. The effect of carbonylcyanide m-chlorophenylhydrazone on the transmembrane proton gradient was also determined. Our results showed that the flagellar motors of the Halomonas strains were energized by both H+ and Na+ in one cell. The bimodal nature of Halomonas spp. motility with respect to the driving energy source may reflect ecophysiological versatility to adapt to a wide range of salt conditions of the marine environment.  相似文献   

5.
Pseudomonas aeruginosa is a ubiquitous bacterium capable of twitching, swimming, and swarming motility. In this study, we present evidence that P. aeruginosa has two flagellar stators, conserved in all pseudomonads as well as some other gram-negative bacteria. Either stator is sufficient for swimming, but both are necessary for swarming motility under most of the conditions tested, suggesting that these two stators may have different roles in these two types of motility.  相似文献   

6.
We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed.  相似文献   

7.
PomA is thought to be a component of the ion channel in the sodium-driven polar-flagellar motor of Vibrio alginolyticus. We have found that some cysteine substitutions in the periplasmic region of PomA result in a slow-motility phenotype, in which swarming and swimming speeds are reduced even in the presence of high concentrations of NaCl. Most of the mutants showed a sodium ion dependence similar to that of the wild type but with significantly reduced motility at all sodium ion concentrations. By contrast, motility of the D31C mutant showed a sharp dependence on NaCl concentration, with a threshold at 38 mM. The motor of the D31C mutant rotates stably, as monitored by laser dark-field microscopy, suggesting that the mutant PomA protein is assembled normally into the motor complex. Mutational studies of Asp31 suggest that, although this residue is not essential for motor rotation, a negative charge at this position contributes to optimal speed and/or efficiency of the motor.  相似文献   

8.
Spirochetes are unique among swimming bacteria in terms of their lack of external flagella. They actively move in viscous environments, and, surprisingly, the swimming speed of the spirochete Leptospira interrogans has been reported to increase with viscosity in methylcellulose solutions. Many researchers consider that the presence of a loose, quasi-rigid network formed by linear polymer molecules is related to this strange phenomenon. One of the authors has proposed a theory that expresses this idea mathematically and successfully explains the speed properties of an externally flagellated bacterium in viscous environments. This theory predicts that the ratio of swimming speed to wave frequency (v/f ratio, motion efficiency in a sense) increases with viscosity. In this study, we demonstrated a new method of measuring the swimming speed and wave frequency of spirochetes and the motion characteristics of a swine intestinal spirochete, Brachyspira pilosicoli strain NK1f, measured in viscous environments. Several sets of swimming speed and wave frequency data were simultaneously derived from an animation obtained by our method. The v/f ratio of NK1f displayed a tendency to increase with increasing viscosity, suggesting the validity of the above-mentioned theory. Improvement of motion efficiency is at least one of the factors that maintain spirochete motility in viscous environments.  相似文献   

9.
Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.  相似文献   

10.
In the present work we report the variation in swimming speed ofVibrio cholerae with respect to the change in concentration of sodium ions in the medium. We have also studied the variation in swimming speed with respect to temperature. We find that the swimming speed initially shows a linear increase with the increase of the sodium ions in the medium and then plateaus. The range within which the swimming speed attains saturation is approximately the same at different temperatures.  相似文献   

11.
Leptospires are a group of bacteria with a unique ultrastructure and a fascinating swimming behavior that cause a number of emerging and re-emerging diseases worldwide called leptospirosis. The unusual form of motility is thought to play a critical role in the infection process. However, the inhibition mechanism of antiserum on the motility of Leptospira to attenuate the infection efficiency is unknown. In this study, effect of antiserum on motility was quantitatively investigated by swimming speed. Relatively low concentration of antiserum was found to inhibit leptospiral motility, suggesting that the basic immunization can affect the infection efficiency. Recovery of motility a few hours later after the addition of antiserum was observed. This raises a hypothesis that Leptospira carries surface molecules bound with antibodies toward the cell end to escape and recovers the motility.  相似文献   

12.
J P Armitage  M C Evans 《FEBS letters》1983,156(1):113-118
ATP generated by the anaerobic metabolism of L-arginine in Pseudomonas aeruginosa was used to maintain the membrane potential. Although both the ATP concentration and membrane potential were lower than in aerobically incubated bacteria, motility and chemotaxis were almost normal. Venturicidin stopped anaerobic motility by abolishing the membrane potential. The addition of venturicidin to aerobic bacteria caused an increase in the membrane potential, but a decrease in internal ATP concentration, resulting in bacteria which were motile but non-chemotactic. The membrane potential was the only requirement for continued motility but ATP was required in addition for chemotaxis.  相似文献   

13.
Lipophilic cations (tetraphenylarsonium, tetraphenylphosphonium, and triphenylmethylphosphonium) caused a number of major changes in the physiology of Bacillus subtilis. Macromolecular synthesis was inhibited, adenosine 5'-triphosphate concentration increased, swimming speed was reduced, tumbling was suppressed, and the capacity to take up the cations was greatly enhanced; respiration was not significantly altered. The effects occurred at lipophilic cation concentrations in the range commonly employed for measurement of membrane potential. Neither the enhancement of cation uptake nor the motility inhibition was a consequence of alteration of membrane potential, since both effects were still seen in the presence of valinomycin, with the extent of 86Rb+ uptake indicating a constant potential. Because suppression of tumbling accompanied speed reduction, as has also been found when protonmotive force is reduced, it is likely that lipophilic cations are perturbing the process of conversion of proton energy into work, rather than simply causing structural damage.  相似文献   

14.
Biotic factors that affect phytoplankton physiology and behavior are not well characterized but probably play a crucial role in regulating their population dynamics in nature. We document evidence that some marine bacteria can decrease the swimming speed of motile phytoplankton through the release of putative protease(s). Using the dinoflagellate Lingulodinium polyedrum (F. Stein) J. D. Dodge as a model system, we showed that the motility‐reducing components of bacterial‐algal cocultures were mostly heat labile, were of high molecular weight (>50 kDa), and could be partially neutralized by incubations with protease inhibitors. We further showed that additions of the purified protease pronase E decreased dinoflagellate swimming speed in a concentration‐dependent manner. We propose that motility can be used as a marker for dinoflagellate stress or general unhealthy status due to proteolytic bacteria, among other factors.  相似文献   

15.
Bacterial biofilms are structured multicellular communities that are responsible for a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near a surface is crucial for understanding the transition from the planktonic to the biofilm phenotype. By translating microscopy movies into searchable databases of bacterial behavior and developing image-based search engines, we were able to identify fundamental appendage-specific mechanisms for the surface motility of Pseudomonas aeruginosa. Type IV pili mediate two surface motility mechanisms: horizontally oriented crawling, by which the bacterium moves lengthwise with high directional persistence, and vertically oriented walking, by which the bacterium moves with low directional persistence and high instantaneous velocity, allowing it to rapidly explore microenvironments. The flagellum mediates two additional motility mechanisms: near-surface swimming and surface-anchored spinning, which often precedes detachment from a surface. Flagella and pili interact cooperatively in a launch sequence whereby bacteria change orientation from horizontal to vertical and then detach. Vertical orientation facilitates detachment from surfaces and thereby influences biofilm morphology.  相似文献   

16.
The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error‐prone PCR to introduce single point mutations into the sodium‐powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium‐channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C‐terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion‐channel blockers.  相似文献   

17.
The combination of laser tweezers, fluorescent imaging, and real-time automated tracking and trapping (RATTS) can measure sperm swimming speed and swimming force simultaneously with mitochondrial membrane potential (MMP). This approach is used to study the roles of two sources of ATP in sperm motility: oxidative phosphorylation, which occurs in the mitochondria located in the sperm midpiece and glycolysis, which occurs along the length of the sperm tail (flagellum). The relationships between (a) swimming speed and MMP and (b) swimming force and MMP are studied in dog and human sperm. The effects of glucose, oxidative phosphorylation inhibitors and glycolytic inhibitors on human sperm motility are examined. The results indicate that oxidative phosphorylation does contribute some ATP for human sperm motility, but not enough to sustain high motility. The glycolytic pathway is shown to be a primary source of energy for human sperm motility.  相似文献   

18.
Flagella are complex surface organelles that allow bacteria to move towards favourable environments and that contribute to the virulence of pathogenic bacteria through adhesion and biofilm formation on host surfaces. There are a few bacteria that possess functional dual flagella systems, such as Vibrio parahaemolyticus, some mesophilic Aeromonas spp., Rhodospirillum centenum and Azospirillum brasilense. These bacteria are able to express both a constitutive polar flagellum required for swimming motility and a separate lateral flagella system that is induced in viscous media or on surfaces and is essential for swarming motility. As flagella synthesis and motility have a high metabolic cost for the bacterium, the expression of the inducible lateral flagella system is highly regulated by a number of environmental factors and regulators.  相似文献   

19.
To develop a novel toxicity measurement system using the persistent swimming property of magnetic bacteria along an externally applied magnetic field, certain characteristics of Magnetospirillum sp. AMB-1 cells were examined, including their growth pattern, motility, magnetosensitivity, swimming speed, and cell length distribution. In addition, the effect of toxic compounds on the swimming speed was assessed relative to application as a toxicity sensor. With an inoculum of 1.0 x 10(8) cells/mL, the cells reached the stationary phase with a concentration of about 5 x 10(8) cells/mL after 20 h, under both aerobic and anaerobic conditions. The distribution of the cell length did not vary significantly during the growth period, and both aerobically and anaerobically growing cells showed a similar cell length distribution. Although the cells showed similar growth patterns under both conditions, the anaerobically grown cells exhibited higher motility and magnetosensitivity. Actively growing cells under anaerobic conditions had an average swimming speed of 49 microm/s with a standard deviation of 20 microm/s. When the anaerobically growing cells were exposed to various concentrations of toxic compounds, such as 1-propanol and acetone, the swimming speed decreased with an increased concentration of the toxic compound. Accordingly, the relationship between swimming speed and toxicity can be used as an effective quantitative toxicity measurement; furthermore, the relative sensitivity of the proposed system was comparable to Microtox, which is commercially available.  相似文献   

20.
Bacterial motility is associated to a wide range of biological processes and it plays a key role in the virulence of many pathogens. Here we describe a method to distinguish the dynamic properties of bacteria by analyzing the statistical functions derived from the trajectories of a bacterium trapped by a single optical beam. The approach is based on the model of the rotation of a solid optically trapped sphere. The technique is easily implemented in a biological laboratory, since with only a small number of optical and electronic components a simple biological microscope can be converted into the required analyzer. To illustrate the functionality of this method, we probed several serovar Typhimurium mutants that differed from the wild-type with respect to their swimming patterns. In a further application, the motility dynamics of the Typhimurium mutant were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号