共查询到20条相似文献,搜索用时 15 毫秒
1.
The retinohypothalamic tract (RHT) originates from a subset of retinal ganglion cells (RGCs). The cells of the RHT co-store the neurotransmitters PACAP and glutamate, which in a complex interplay mediate light information to the circadian clock located in the suprachiasmatic nuclei (SCN). These ganglion cells are intrinsically photosensitive probably due to expression of melanopsin, a putative photoreceptor involved in light entrainment. In the present study we examined PACAP-containing retinal projections to the brain using intravitreal injection of the anterograde tracer cholera toxin subunit B (ChB) and double immunostaining for PACAP and ChB. Our results show that the PACAP-containing nerve fibres not only constituted the major projections to the SCN and the intergeniculate leaflet of the thalamus but also had a large terminal field in the olivary pretectal nucleus. The contralateral projection dominated except for the SCN, which showed bilateral innervation. PACAP-containing retinal fibres were also found in the ventrolateral preoptic nucleus, the anterior and lateral hypothalamic area, the subparaventricular zone, the ventral part of the lateral geniculate nucleus and the nucleus of the optic tract. Retinal projections not previously described in the rat also contained PACAP. These new projections were found in the lateral posterior nucleus, the posterior limitans nucleus, the dorsal part of the anterior pretectal nucleus and the posterior and medial pretectal nuclei. Only a few PACAP-containing retinal fibres were found in the superior colliculus. Areas innervated by PACAP-immunoreactive fibres also expressed the PACAP-specific PAC1 receptor as shown by in situ hybridization histochemistry. The findings suggest that PACAP plays a role as neurotransmitter in non-imaging photoperception to target areas in the brain regulating circadian timing, masking, regulation of sleep-wake cycle and pupillary reflex.Abbreviations 3v Third ventricle - ac Anterior commissure - AD Anterodorsal thalamic nucleus - AH Anterior hypothalamic area - APTD Anterior pretectal nucleus, dorsal part - ChB Cholera toxin subunit B - CPu Caudate putamen - CPT Commissural pretectal nucleus - DGL Dorsal geniculate nucleus - IGL Intergeniculate leaflet - LH Lateral hypothalamic area - LP Lateral posterior thalamic nucleus - LS Lateral septum - MB Mammillary body - MPO Medial preoptic nucleus - MPT Medial pretectal nucleus - oc Optic chiasma - OPT Olivary pretectal nucleus - OT Nucleus of the optic tract - PACAP Pituitary adenylate cyclase-activating polypeptide - PAC1 PACAP receptor type 1 - PAG Periaqueductal gray - Pe Periventricular hypothalamic nucleus - PLi Posterior limitans thalamic nucleus - PPT Posterior pretectal nucleus - PVT Paraventricular thalamic nucleus - PVN Paraventricular hypothalamic nucleus - RGCs Retinal ganglion cells - RHT Retinohypothalamic tract - SCN Suprachiasmatic nucleus - SC Superior colliculus - SNR Substantia nigra, reticular part - SON Supraoptic nucleus - SPVZ Subparaventricular zone - VGL Ventral geniculate nucleus - VIP Vasoactive intestinal peptide - VPAC1 VIP/PACAP receptor type 1 - VPAC2 VIP/PACAP receptor type 2 - VLPO Ventrolateral preoptic nucleus - VTA Ventral tegmental areaThis study was supported by The Danish Biotechnology Center for Cellular Communication and The Danish Neuroscience Programme. J.H. is postdoc funded by the Danish Medical Research Council (Jr. No. 0001716) 相似文献
2.
Retsu Mitsui 《Cell and tissue research》2009,337(1):37-43
A mechanical or chemical stimulus applied to the intestinal mucosa induces motility reflexes in the rat colon. Enteric neurons containing calcitonin gene-related peptide (CGRP) have been suggested as intrinsic primary afferent neurons responsible for mediating such reflexes. In the present study, immunohistochemistry was performed on whole-mount stretch preparations to investigate chemical profiles, morphological characteristics and projections of CGRP-containing neurons in the myenteric plexus of the rat colon. CGRP-positive neuronal cell bodies were detected in preparations incubated with colchicine-containing medium, whereas CGRP-positive nerve fibres were found in colchicine-untreated preparations. These neurons had large oval or round cell bodies that were also immunoreactive for the calcium-binding protein calretinin and neurofilament 200. Myenteric neurons positive for both calretinin and neurofilament 200 had several long processes that emerged from the cell body, consistent with Dogiel type II morphology. Application of the neural tracer DiI to the intestinal mucosa revealed that DiI-labelled myenteric neurons each had an oval or round cell body immunoreactive for calretinin. Thus, CGRP-containing myenteric neurons are Dogiel type II neurons and are immunoreactive for calretinin and neurofilament 200 in the rat colon. These neurons probably project to the intestinal mucosa. This study was supported by a Waseda University Grant for Special Research Projects (2008A-889). 相似文献
3.
To identify neurochemical phenotypes of esophageal myenteric neurons synaptically activated by vagal preganglionic efferents, we immunohistochemically detected the expression of Fos, an immediate early gene product, in whole-mount preparations of the entire esophagus of rats following electrical stimulation of the vagus nerves. When electrical stimulation was applied to either the cervical left (LVN) or right vagus nerve (RVN), neurons with nuclei showing Fos immunoreactivity (IR) were found to comprise approximately 10% of the total myenteric neurons in the entire esophagus. These neurons increased from the oral toward the gastric end of the esophagus, with the highest frequency in the abdominal portion of the esophagus. A significant difference was not found in the number of Fos neurons between the LVN-stimulated and RVN-stimulated esophagus. Double-immunolabeling showed that nitric oxide synthase (NOS)-IR occurred in most (86% and 84% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the entire esophagus. Furthermore, the stimulation of either of the vagus nerves resulted in high proportions (71%-90%) of Fos neurons with NOS-IR, with respect to the total Fos neurons in each segment, in the entire esophagus. However, a small proportion (8% and 7% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the esophagus exhibited choline acetyltransferase (ChAT)-IR. The occurrence-frequency of Fos neurons with ChAT-IR was less than 4% of the total Fos neurons in any segment of the LVN-stimulated and RVN-stimulated esophagus. Some of the Fos neurons with ChAT-IR appeared to be innervated by numerous varicose ChAT-positive nerve terminals. The present results showing that electrical stimulation of the vagus nerves induces a high proportion of Fos neurons with NOS-IR suggests the preferential activation of NOS neurons in the esophagus by vagal preganglionic efferents. This connectivity between the vagal efferents and intrinsic nitrergic neurons might be involved in inhibitory actions on esophageal motility.This study was supported by Grant-in Aids for Scientific Research from Ministry of Education, Sports, and Culture of Japan to H.K. (no. 15500236) and to M.K. (no. 14570065). 相似文献
4.
5.
Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder,colon or penis 总被引:2,自引:0,他引:2
Summary In male rats a large number of the postganglionic neurons which innervate the pelvic organs are located in the major pelvic ganglion. In the present study we have identified the location within this ganglion of neurons which project to either of three pelvic organs, the penis, colon or urinary bladder. Two fluorescent retrogradely-transported dyes, Fast Blue and Fluoro-Gold, were used. For most animals one dye was injected into the cavernous space of the penis, the wall of the distal colon or the wall of the urinary bladder. In a small number of animals two organs were injected, each with a different dye. One to six weeks after injection the major pelvic ganglia were fixed in buffered formaldehyde. The distribution of fluorescent dye-labelled cells was observed in whole mounts of complete ganglia and, in most cases, also in small accessory ganglia located between the ureter and the prostate. The studies showed a unique pattern of distribution for each organ-specific group of neurons. Most of the colon neurons are located in the major pelvic ganglion near the entrance of the pelvic nerve, whereas almost all of the penis neurons are near or within the penile nerve. Bladder neurons are relatively evenly distributed throughout the ganglion. These results demonstrate a distinct topographical organization of organ-specific neurons of the major pelvic ganglion of the male rat, a phenomenon which has also been observed in other peripheral ganglia. 相似文献
6.
F. Gaytan A. J. Martinez-Fuentes F. Garcia-Navarro H. Vaudry E. Aguilar 《Cell and tissue research》1994,276(2):223-227
Pituitary adenylate cyclase activating peptide (PACAP) is a novel peptide isolated from the ovine hypothalamus. PACAP exists in 2 molecular forms with 27 (PACAP27) or 38 (PACAP38) amino acid residues. PACAP localization was studied by immunohistochemical methods in central (bone marrow and thymus) and peripheral (spleen, lymph nodes and duodenal mucosa) lymphoid tissues with antisera raised against PACAP27 or PACAP38. PACAP-positive cells were found in all lymphoid tissues examined. These cells were highly positive for PACAP38 but were negative for PACAP27. Morphologically, they were small mononuclear cells with relatively scarce cytoplasm and lymphocyte-like features. PACAP38-positive cells were abundant in peripheral lymphoid tissues (i.e., mesenteric lymph nodes). In the duodenal mucosa, PACAP38-positive cells were located either in the lamina propria or epithelium. These results suggest that PACAP38-positive cells are present within lymphoid tissues and may represent a lymphocyte-like cell subpopulation that has a potential role in cell-to-cell interactions in the immune system and in the integrated communication between neuroendocrine and immune systems. 相似文献
7.
Summary Subcellular structures of juxtaglomerular (JG) cells in the rat kidney were morphometrically examined at six evenly spaced times over 24 h. Plasma renin activities and angiotensinogen concentrations were also measured at these times. The cell volumes were larger at 20.00 h and 04.00 h than at 00.00 h, whereas the nuclear volumes peaked at 20.00 h and 08.00 h, decreasing at 00.00 h and 16.00 h. The volume and surface densities of renin granules and their individual volumes and surface areas peaked at 16.00 h and 00.00 h, decreasing at 20.00 h and 08.00 h, whereas their numerical densities peaked at 20.00 h, decreasing at 12.00 h. The surface densities of the rough endoplasmic reticulum (rER) peaked at 20.00 h, decreasing at other times, except at 08.00 h, when rER volume and surface density were relatively high. The plasma renin activity was maximal at 20.00 h, whereas it was minimal at 08.00 h. The variation in plasma angiotensinogen concentrations was inversely correlated with that in plasma renin activities. These results suggest that JG cells actively synthesize and release renin during the dark period, especially at 20.00 h, whereas during the light period they gradually synthesize renin and produce the granules, most of which may be stored in the cells during this period. 相似文献
8.
Immunocytochemical localization of aromatase-containing neurons in the rat brain during pre- and postnatal development 总被引:3,自引:0,他引:3
Yoshihiro Tsuruo Kazunori Ishimura Hisao Fujita Yoshio Osawa 《Cell and tissue research》1994,278(1):29-39
the present immunohistochemical study demonstrates the ontogenetic appearance of aromatase-immunoreactive neurons in several discrete regions of the hypothalamus and limbic system in the rat brain, using a purified antibody against human placental aromatase cytochrome P450. Immunoreactive cells were first detected in the preoptic area on the 13th day of embryonic life (E 13), and additionally in the bed nucleus of the stria terminalis on E 15. Labeled cells were also found in the medial amygdaloid nucleus and the ventromedial nucleus on E 16, and some were detected in the arcuate nucleus on E 19. As gestation progressed, the number and the immunoreactivity of these cells gradually increased and peaked within definite periods of perinatal life and there-after declined or disappeared. The immunoreactive cells were also found in the central amygdaloid nucleus and the lateral septal nucleus, and in the ventral pallidum, after the 14th day of postnatal life (P 14) and 30th day (P 30), respectively. The distribution of aromatase-immunoreactive neurons was similar between the sexes, while the immunoreactivity was higher in males than in females after late gestational days. No immunoreaction was detectable in other regions of the telencephalon or midbrain at any time periods studied. The aromatase-immunoreactive neurons in the specific regions may be involved in the sexual differentiation of the brain. 相似文献
9.
Masashi Shin Lars-Inge Larsson David M. Hougaard Kunio Fujiwara 《Cell and tissue research》2009,337(3):429-438
The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia.
Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in
the outer root sheath of hair follicles. DM-positive matrix cells are detectable up to 48 h after injection and exhibit a
characteristic granular morphology, which is not observed in saline-injected controls. TUNEL-staining has revealed that DM
injection induces programmed cell death (PCD) in rat hair follicles. Cells undergoing PCD are detectable as late as 5 days
postinjection in both the matrix and outer root sheath. Newly developed double-staining has shown that some of the DM-positive
matrix cell nuclei are also TUNEL-positive. Staining for activated caspase-3 has demonstrated immunopositive cells following
DM administration both in the matrix and in the outer root sheath. Ultrastructural immunocytochemistry has shown the presence
of DM-positive cells with two different types of morphology. About half of the immunopositive cells exhibit a morphology typical
of classical apoptosis (PCD type 1), whereas the other half show signs of autophagic cell death (PCD type 2). Interestingly,
little, if any, DM accumulation or apoptosis has been detected in the dermal hair papillae. This may have a bearing on potential
regeneration of the hair follicles. Thus, DM accumulates in a characteristic pattern in hair follicles. This accumulation
is associated with the induction of two morphologically distinct forms of PCD. 相似文献
10.
Summary Antisera specific for three different regions of pancreatic proglucagon were used to examine the distribution of such immunoreactivity in rat hypothalamus. Neurons in the supraoptic and paraventricular nuclei were immunoreactive with an antiserum against glucagon, but not with antisera directed towards the aminoterminal region of proglucagon (glicentin) or the glucagon-like peptide I sequence in the carboxyl-terminal region of proglucagon. These findings confirm a previous report of glucagon-like immunoreactivity in the supraoptic and paraventricular nuclei, but indicate that, while this material is immunochemically related to glucagon, it is not derived from a proglucagon-like precursor. 相似文献
11.
Summary The Catecholaminergic innervation of neurons containing growth hormone-releasing factor (GRF) was examined by use of a method which combined either 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline with immunocytochemistry for GRF in the same tissue sections at the electron-microscopic level. In the ventrolateral part of the arcuate nucleus of the rat hypothalamus a large number of immunonegative axon terminals were found to make synaptic contact with GRF-like immunoreactive (GRF-LI) cell bodies and processes. 3H-noradrenaline autoradiography or 5-OHDA-labeling combined with GRF immunocytochemistry revealed that axon terminals labeled with 3H-noradrenaline or 5-OHDA make synaptic contact with the GRF-LI nerve cell bodies and processes. These findings indicate that catecholamine-containing neurons innervate GRF neurons to regulate GRF secretion via synapses in the rat arcuate nucleus. 相似文献
12.
Autonomic innervation of the prostate gland supplies the acini, and non-vascular and vascular smooth muscle. The activity of each of these tissues is enhanced by sympathetic outflow, whereas the role of the parasympathetic nervous system in this organ is unclear. In the present study, a range of methods was applied in rats to determine the location of autonomic neurons supplying this gland, the immunohistochemical properties of these neurons, the spinal connections made with the postganglionic pathways and the distribution of various axon types within the gland. Injection of the retrograde tracer, FluoroGold, into the ventral gland visualised neurons within the major pelvic ganglion and sympathetic chain. Fluorescence immunohistochemical studies on the labelled pelvic neurons showed that most were noradrenergic (also containing neuropeptide Y, NPY), the others being non-noradrenergic and containing either vasoactive intestinal peptide (VIP) or NPY. Sympathetic dyelabelled neurons were identified by the presence of varicose nerve terminals stained for synaptophysin on their somata following lesion of sacral inputs. Parasympathetic innervation of dye-labelled neurons was identified by continued innervation after hypogastric nerve lesion. Most noradrenergic prostate-projecting neurons were sympathetic, as were many of the non-noradrenergic VIP neurons. Parasympathetic prostate-projecting neurons were largely non-noradrenergic and contained either VIP or NPY. All substances found in retrogradely labelled somata were located in axons within the prostate gland but had slightly different patterns of distribution. The studies have shown that there are a significant number of non-noradrenergic sympathetic prostate-projecting neurons, which contain VIP. 相似文献
13.
14.
Summary An analysis of the ultrastructure of neuropeptide Y-immunoreactive neurons in rat striatum revealed the presence of a cilium in half of the neurons serially sectioned in part, and in a quarter of the neurons observed in single sections. It is speculated that the cilium is a developmental remnant, i.e., a sign of the less differentiated state of the NPY-containing neurons compared with the other neurons, and that this could explain the plasticity of this type of neuron after lesions.This work is part of the thesis of G. Wolfrum submitted to the Ludwig-Maximilians-Universität in partial fulfillment for the requirements of a Dr. rer. nat. degree 相似文献
15.
Summary Serial brain sections of female rats at late pregnancy, parturition or early lactation were immunostained for oxytocin. Immunoreactive perikarya were visible in the magnocellular nuclei in all experimental animals as well as in ovariectomized, nulliparous controls. During late pregnancy and at parturition additional immunostaining appeared in groups of perivascular neurons in the preoptic region, the lateral subcommissural nucleus, the perifornical region and scattered throughout the ventral portion of the hypothalamus. Immunostaining of almost all of these perivascular neurons disappeared by day two postpartum, while another population of oxytocin neurons, without association with blood vessels, appeared in these brain regions after parturition. Immunostaining of processes from oxytocinergic neurons in the periventricular nucleus increased markedly near parturition. Many of these processes projected toward the third ventricle. Oxytocinergic neuronal systems that are activated in late pregnancy and early postpartum may contribute to several physiological changes associated with parturition and lactation including the onset of maternal behavior. 相似文献
16.
Immunolocalization of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars 总被引:2,自引:0,他引:2
Yamamoto T Domon T Takahashi S Arambawatta AK Wakita M 《Cell and tissue research》2004,317(3):299-312
To elucidate the roles of proteoglycans (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGs), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the initial cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal junction were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment. 相似文献
17.
In the anterior pituitary gland, c-Fos expression is evoked by various stimuli. However, whether c-Fos expression is directly
related to the stimulation of anterior pituitary cells by hypothalamic secretagogues is unclear. To confirm whether the reception
of hormone-releasing stimuli evokes c-Fos expression in anterior pituitary cells, we have examined c-Fos expression of anterior
pituitary glands in rats administered with synthetic corticotrophin-releasing hormone (CRH) intravenously or subjected to
restraint stress. Single intravenous administration of CRH increases the number of c-Fos-expressing cells, and this number
does not change even if the dose is increased. Double-immunostaining has revealed that most of the c-Fos-expressing cells
contain adrenocorticotrophic hormone (ACTH); corticotrophs that do not express c-Fos in response to CRH have also been found.
However, restraint stress evokes c-Fos expression in most of the corticotrophs and in a partial population of lactotrophs.
These results suggest that c-Fos expression increases in corticotrophs stimulated by ACTH secretagogues, including CRH. Furthermore,
we have found restricted numbers of corticotrophs expressing c-Fos in response to CRH. Although the mechanism underlying the
different responses to CRH is not apparent, c-Fos is probably a useful immunohistochemical marker for corticotrophs stimulated
by ACTH secretagogues.
This work was supported by the Jichi Medical University young investigator award. 相似文献
18.
Summary The GABAergic innervation of vasopressin-containing cells in the magnocellular part of the paraventricular nucleus was studied at the electron-microscope level using antibodies against GABA and vasopressin. The detection of both GABA and vasopressin on the same ultrathin section, performed with a double-labeling immunogold method, revealed GABAergic terminals in symmetrical synaptic contact with vasopressin-containing neurons. These GABAergic terminals displayed mitochondria, clear synaptic vesicles and varying numbers of electron-dense vesicles. Vasopressin-immunoreactivity was associated with neurosecretory granules, whereas GABA-immunoreactivity was found above mitochondria, clear synaptic vesicles and some electron-dense vesicles. This study, demonstrating the extensive participation of GABA in the innervation of magnocellular vasopressin-secreting neurons, suggests that this inhibitory neurotransmitter regulates vasopressin secretion at the level of the paraventricular nucleus. 相似文献
19.
20.
J. G. Briñón J. R. Alonso R. Arévalo E. García-Ojeda J. Lara J. Aijón 《Cell and tissue research》1992,269(2):289-297
Summary We have studied the distribution of calbindin D-28k immunoreactivity in the rat olfactory bulb using specific monoclonal antibodies and the avidin-biotin-immunoperoxidase method. The largest number of positive neurons was located in the periglomerular layer. These neurons were identified as periglomerular cells; they have been described also by other authors as calbindin-positive elements. Close to these neurons, a second population of nerve cells was identified as superficial shortaxon neurons. The remaining layers showed a smaller number of stained elements. Other labeled neurons were located along the external border of the external plexiform layer; the scarce neurons marking its internal border were identified as van Gehuchten cells. No immunoreactive structures were found in the mitral cell layer, although we observed another population of immunostained short-axon cells at its internal border. Some reactive structures, identified by us as horizontal and vertical cells of Cajal, were located in the boundary zone between the internal plexiform layer and the granule layer. In the white matter, we found a neuronal type characterized by its large size and oriented arborization of varicose dendrites. 相似文献