首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过水培实验,研究了系列浓度La在不同处理时间内对水稻根质膜透性和根分泌物中几种营养离子含量的影响。结果表明,La在低浓度时(≤50μg·ml^-1),可以稳定细胞膜,减少电解质外渗率,在此浓度下,根系分泌物中K^+、Ca^2+、P和H^+的含量比对照低,La的浓度升高(100~400μg·ml^-1),随着处理时间的延长,电解质外渗率呈现短时间抑制,长时间促进的规律.La在高浓度时(c≥500μg·ml^-1),即使短时间的处理,也会使根细胞原生质膜破坏,电解质外渗率提高.此时根分泌物中K^+、Ca^2+、P和H^+含量均比对照高.由此可以得出在水培条件下,La^3+≤50μg·ml^-1对水稻生长是安全的。  相似文献   

2.
Replacement of light by dibutyryl-CAMP and CAMP in betacyanin synthesis   总被引:1,自引:0,他引:1  
The effect of adenosine 3′,5′-cyclic monophosphate and its N6,O2′- dibutyryl derivative (Bu2-CAMP) on betacyanin formation in etiolated Amaranthus paniculatus seedlings was investigated. Both substances can replace the action of light in the synthesis of these pigments, the formation of which is controlled by phytochrome. The specificity of this mimicry is underlined by the observations that sodium butyrate does not promote any betacyanin formation and that theophylline enhances the effect of Bu2-AMP. Puromycin inhibits the induction of betacyanin synthesis by Bu2-CAMP just as it does the light-induced pigment formation. These findings suggest that phytochrome exerts its controlling role in the synthesis of betacyanins through the agency of CAMP.  相似文献   

3.
The physical state of the lysosomal membrane was modulated with the membrane fluidizers n-propanol and n-octanol and with the membrane rigidifiers cholesteryl hemisuccinate and cholesterol. Membrane fluidity was examined by the steady-state fluorescence anisotropy of 2-(9-anthroyloxy) palmitic acid and 16-(9-anthroyloxy) palmitic acid. Fluidizing the membranes at the surface and center areas increased the proton permeability coefficient by 92.8 and 18.0%, respectively. Rigidifying the membranes at the surface and center areas decreased the coefficient by 68.2 and 40.2%, respectively. Proton leakage of the lysosomes increased and decreased similar to the coefficient changes with the treatments. The results indicate that lysosomal proton permeability is affected by its membrane's physical state, and the physical state of the membrane surface area affects the proton permeability more markedly. The proton permeability coefficient of liposomes was similar to that of lysosomes, suggesting that efflux of lysosomal protons might occur through the lipid part of the bilayer but not transmembrane proteins.  相似文献   

4.
Liu J  Christian JA  Critser JK 《Cryobiology》2002,44(3):2409-268
The objective of this study was to determine the cryobiological characteristics of canine red blood cells (RBC). These included the hydraulic conductivity (L(p)), the permeability coefficients (P(s)) of common cryoprotectant agents (CPAs), the associated reflection coefficient (sigma), the activation energies (E(a)) of L(p) and P(s) and the osmotic tolerance limits. By using a stopped-flow apparatus, the changes of fluorescence intensity emitted by intracellularly entrapped 5-carboxyfluorescein diacetate (CFDA) were recorded when cells were experiencing osmotic volume changes. After the determination of the relationship between fluorescence intensity and cell volume, cell volume changes were calculated. These volume changes were used in three-parameter fitting calculations to determine the values of L(p), P(s), and sigma for common CPAs. These volume measurements and data analyses were repeated at three different temperatures (22, 14, 7 degrees C). Using the Arrhenius equation, the activation energies of L(p) and P(s) in the presence of CPAs were determined. The osmotic tolerance limits for canine RBC were determined by measuring the percentage of free hemoglobin in NaCl solutions with various osmolalities compared to that released by RBC incubated in double distilled water. The upper and lower osmotic tolerance limits were found to be 150mOsm (1.67V(iso)) and 1200mOsm (0.45V(iso)), respectively. These parameters were then used to calculate the amount of non-permeating solute needed to keep cell volume excursions within the osmotic tolerance limits during CPA addition and removal.  相似文献   

5.
Lysosomal permeability to potassium ions is an important property of the organelle. Influence of the membrane physical state on the potassium ion permeability of isolated lysosomes was assessed by measuring the membrane potential with bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol and monitoring the lysosomal proton leakage with p-nitrophenol. The membrane fluidity of lysosomes was modulated by treatment with membrane fluidizer benzyl alcohol and rigidifier cholesteryl hemisuccinate. Changes in the membrane order were examined by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. The measurements of membrane potential and proton leakage demonstrated that the permeability of lysosomes to potassium ions increased with rigidification of their membranes by cholesteryl hemisuccinate treatment at 37 degrees C, and decreased with fluidization of their membranes by benzyl alcohol treatment at 2 degrees C. The changes in ion permeability could be recovered by fluidizing the rigidified membranes and rigidifying the fluidized membranes. The results suggest that the physical states of lysosomal membranes play an important role in the regulation of their K(+) permeability.  相似文献   

6.
Conditions promoting the formation of sealed membrane vesicles from corn roots with reduced proton permeability were examined using the probe 9-aminoacridine as a rapid indicator of pH gradient formation and dissipation. Plasma membrane vesicles isolated by differential and density gradient centrifugation were leaky to protons and rapidly equilibrated when exposed to artificially imposed pH gradients. The leaky plasma membrane vesicles showed reduced proton permeability when incubated with calcium or with excess phospholipids. However, these vesicles were unable to form ATP-induced pH gradients. Sealed vesicles isolated by discontinuous Ficoll gradient centrifugation of a microsomal fraction displayed reduced proton permeability and were osmotically active. In contrast to purified plasma membrane vesicles, the microsomal-derived vesicles were more suitable for studies of active proton transport.  相似文献   

7.
Effects of photooxidation of membrane thiol groups on lysosomal proton permeability were studied by measuring intralysosomal pH with fluorescein isothiocyanate-dextran and monitoring proton leakage with p-nitrophenol. Methylene blue-mediated photooxidation of lysosomes decreased their membrane thiol groups and produced cross-linking of the membrane proteins, which was established by the measurement of residual membrane thiol groups with 5,5'-dithio-bis(2-nitrobenzoic acid) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The cross-linking of proteins could be abolished by subsequent treatment of the photodamaged lysosomes with dithiothreitol, indicating that the proteins were linked via disulfide bonds. In addition, the photodamage of lysosomes raised the intralysosomal pH and caused leakage of the lysosomal protons, which could also be reversed by subsequent dithiothreitol treatment. This indicates that lysosomal proton permeability can be increased by photooxidation of the membrane thiol groups and recovered to the normal level by reduction of the groups.  相似文献   

8.
Hairy roots of red beet (Beta vulgaris L.) were cultivated in different types of airlift bioreactors (cone, balloon, bulb, drum and column bioreactors of 5 l capacity and containing 3 l of half strength Murashige & Skoog medium). The cone type of airlift bioreactor gave the highest biomass of hairy roots and betacyanin accumulation. Betacyanin accumulation was 27 mg g–1 dry wt in cultures aerated at 0.3 vvm. Light irradiation of 20 mol m–2 s–1 promoted hairy root growth but optimum betacyanin (34 mg g–1 dry wt) accumulation was with the cultures grown under 60 mol m–2 s–1.  相似文献   

9.
Having an effective means to cryopreserve human oocytes would offer more flexibility in healthcare services for infertility patients, and obviate cryopreservation of preimplantation embryos. It is essential to establish good animal models for human oocyte cryopreservation and the rabbit is a good candidate. Attempts to improve oocyte cryopreservation are often empirical, with results often being irreproducible. Cryopreservation protocols may be optimized by modeling the changes in oocyte volume and the associated damages incurred during the addition and dilution of cryoprotective agents (CPA). The objectives of the current study were to determine cryobiological properties of rabbit oocytes, including the isotonic volume, osmotically inactive cell fraction (Vb), hydraulic conductivity (Lp), permeability (Ps) to dimethylsulfoxide (Me2SO), ethylene glycol (EG), and glycerol (GLY) and to examine the correlation between cell volume excursions and viability. This has led to the development of the accumulative osmotic damage (AOD) model associated with the processes of CPA addition/dilution. Mature rabbit oocytes were perfused with 15% (V/V) CPA medium (dissolved in 1× PBS). The osmotic responses of the oocytes were videotaped. A two-parameter model was fit to the experimental data to determine the values of Lp and Ps. Oocyte volumes reached upon equilibration with 285, 600, 900, and 1200 mOsm (milliosmolal) solutions of non-permeating compounds were plotted in a Boyle van’t Hoff plot. The average radius of rabbit oocytes in an isotonic solution was determined to be 55.7 ± 1.2 μm (n = 16). The rabbit oocyte exhibited an “ideal” osmotic response in the range from iso-osmolity to 1200 mOsm. The Vb was determined to be 20% of the isotonic value with r2 = 0.97. The values of Lp were determined to be 0.79 ± 0.26, 0.82 ± 0.22, and 0.64 ± 0.16 μm min−1 atm−1 and the Ps values were determined to be 2.9 ± 1.3, 2.7 ± 1.3, and 0.27 ± 0.18 × 10−3 cm min−1 for Me2SO, EG and GLY, respectively. There were no significant differences (p > 0.05) between values for Lp and PS in the presence of the Me2SO and EG. However, these values were significantly different from the values in presence of GLY. We calculated the AOD values of those oocytes that experienced the process of CPA additions/dilutions and found that these values were highly correlated to the development rates of these oocytes after parthenogenetic activation (r = −0.98).  相似文献   

10.
Siegel SM  Daly O 《Plant physiology》1966,41(9):1429-1434
Poly-l-lysine, poly-alpha, gamma-diaminobutyric acid and basic proteins cause efflux of betacyanin from beet root tissues to varying degrees. Membrane activities fall in the order: polylysine > poly-alpha, gamma-diaminobutyric acid > polyarginine (protamine), suggesting the importance of steric factors in side-chain to backbone relations. It was also observed that homopolymer activity > heteropolymer activity, using ribonuclease and lysozyme as examples of the latter. Among polylysines, there appears to be an optimal chain length at a molecular weight equal to 50,000. Lowered activity of larger polymers is interpreted in terms of a diffusion barrier, the cell wall.Polylysine and Ca(++) exhibit competitive kinetics, and Ca(++) otherwise is far more active than other cations. It is assumed that polylysine displaces Ca(++) from anionic centers on the membrane, but cannot confer equivalent dimensional stability, rendering the membrane leaky. The possible role of cationic shielding in ionic stabilization of the membrane was also considered. The order of divalent ion activity against polylysine was Ca(++) > Sr(++) > Mg(++), suggesting again a specific size-fit relationship.  相似文献   

11.
Treatment of sickle red cells (SS homozygous) with a voltage pulse of less than 0.8 kV/cm and duration of 20 μs caused a change in the cell membrane, so as to facilitate the permeation of oxygen. The unsickling of the treated cells after a re-introduction of oxygen took place at a much faster rate. Neither leakages of Na+ and K+, nor a change in the cell volume occurred as the result of the low voltage pulsation. The effect of the voltage treatment persisted for hours at 25°C but disappeared rapidly at 37°C. The result suggests that a selective modification of membrane permeability may be achieved by the voltage pulsation technique.  相似文献   

12.
We explore from a theoretical perspective the effects of small nonpolar molecules, such as anesthetic gases, on membrane compressibility and permeability. As a model system we expand a previously proposed generalization of Nagle's model for biomembrane phase transitions. In this model anesthetic gases alter membrane compressibility, causing profound changes in membrane permeability. Anesthetics either increase or decrease membrane permeability, depending on whether the membrane lipid is originally in the solid or melted state, or in a two-phase region. These changes are reversed by high pressure, in agreement with experimental results. Anesthetic-induced changes in compressibility are predicted to inhibit fusion of phospholipid vesicles to each other and to planar bilayers, and thus might be expected to inhibit the fusion of presynaptic vesicles with the presynaptic nerve membrane. This work provides a detailed molecular theory for many of the effects of anesthetic gases on both synapse and axon, and provides a coherent framework for understanding diverse experimental results.  相似文献   

13.
This paper reports the results of a series of experiments designed to test conditions that would permit NaCl to diffuse through 100 Da molecular weight cut-off (MWCO) and 1,000 Da MWCO membranes. For the 100 Da MWCO membrane, the membrane becomes completely impermeable to NaCl when dialyzed against distilled water (DW), but inclusion of one of a variety of different salts in the dialyzing solution maintains membrane permeability to NaCl. A titration experiment revealed that a minimum concentration of 0.1 mM of a salt such as KH2PO4 is required to sustain membrane permeability. In contrast, diffusion through the 1,000 Da MWCO membrane was slightly higher when DW was used as the dialysate. We conclude that the 100 Da MWCO membrane works well for a variety of dialysis applications provided that a maintenance salt is included in all dialyzing solutions.  相似文献   

14.
Stallion spermatozoa exhibit osmotic damage during the cryopreservation process. Recent studies have shown that the addition of cholesterol to spermatozoal membranes increases the cryosurvival of bull, ram and stallion spermatozoa, but the exact mechanism by which added cholesterol improves cryosurvival is not understood. The objectives of this study were to determine if adding cholesterol to stallion sperm membranes alters the osmotic tolerance limits and membrane permeability characteristics of the spermatozoa. In experiment one, stallion spermatozoa were treated with cholesterol-loaded cyclodextrin (CLC), subjected to anisotonic solutions and spermatozoal motility analyzed. The spermatozoa were then returned to isotonic conditions and the percentages of motile spermatozoa again determined. CLC treatment increased the osmotic tolerance limit of stallion spermatozoa in anisotonic solutions and when returned to isotonic conditions. The second and third experiments utilized an electronic particle counter to determine the plasma membrane characteristics of stallion spermatozoa. In experiment two, stallion spermatozoa were determined to behave as linear osmometers. In experiment three, spermatozoa were treated with CLC, incubated with different cryoprotectants (glycerol, ethylene glycol or dimethyl formamide) and their volume excursions measured during cryoprotectant removal at 5° and 22 °C. Stallion spermatozoa were less permeable to the cryoprotectants at 5 °C than 22 °C. Glycerol was the least permeable cryoprotectant in control cells. The addition of CLC’s to spermatozoa increased the permeability of stallion spermatozoa to the cryoprotectants. Therefore, adding cholesterol to spermatozoal membranes reduces the amount of osmotic stress endured by stallion spermatozoa during cryopreservation.  相似文献   

15.
Biophysical characteristics of the plasma membrane, such as osmotic sensitivity and water and cryoprotectant permeability are important determinants of the function of spermatozoa after cryopreservation. A series of experiments was conducted with rhesus macaque spermatozoa at 23 degrees C to determine their: (1) cell volume and osmotically inactive fraction of the cell volume; (2) permeability coefficients for water and the cryoprotectants dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol; (3) tolerance to anisosmotic conditions; and (4) motility after a one step addition and removal of the four cryoprotectants. An electronic particle counter and computer aided semen analysis were used to determine the cell volume and permeability coefficients, and motility, respectively. Rhesus spermatozoa isosmotic cell volume was 27.7+/-3.0 microm3 (mean+/-SEM) with an osmotically inactive cell fraction of 51%. Hydraulic conductivity in the presence of dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol was 1.09+/-0.30, 0.912+/-0.27, 1.53+/-0.53, and 1.94+/-0.47 microm/min/atm, respectively. Cryoprotectant permeability was 1.39+/-0.31, 2.21+/-0.32, 3.38+/-0.63, and 6.07+/-1.1 (x10(-3)cm/min), respectively. Rhesus sperm tolerated all hyposmotic exposures. However, greater than 70% motility loss was observed after exposure to solutions of 600 mOsm and higher. A one step addition and removal of all four cryoprotectants did not cause significant motility loss. These data suggest that rhesus sperm are tolerant to hyposmotic conditions, and ethylene glycol may be the most appropriate cryoprotectant for rhesus sperm cryopreservation, as it has the highest permeability coefficient of the tested cryoprotectants.  相似文献   

16.
It has been hypothesized that pores in the plasma membrane form under conditions of rapid water efflux, allowing extracellular ice to grow into the cytoplasm under conditions of rapid freezing. When cells with intracellular ice are thawed slowly, the transmembrane ice crystal expands through recrystallization causing the cell to lyse. One of the implications of this hypothesis is that osmotic pores will provide an alternative route for water movement under conditions of osmotically induced flow. We show that the plasma membrane water permeability of a fibroblast cell changes as a function of the osmotic pressure gradient that is used to drive water movement. It is further shown that cell volume is more important than the magnitude of water flux in causing this departure from a uniform water permeability. We suggest that these data provide evidence of a transient route for water movement across cell membranes.  相似文献   

17.
Monte Carlo random-walk simulations of diffusion in virtual lattices of cells have been used to study and characterize diffusion-coherence phenomena that arise when pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments are conducted on human red blood cell (RBC; erythrocytes) suspensions. These coherence effects are manifest as diffraction-like patterns when the normalized PGSE signal intensities are plotted as a function of the spatial wave vector q in so-called q-space plots. q-Space analysis is sensitive to small changes in cell morphology, cell size, membrane transport rates, hematocrit, and packing arrangement. In the present study we used simulations to predict the effect of varying the time over which diffusion is measured (the "observation time" or "diffusion time") and the permeability of the membrane on the form of q-space plots. Thus we predict that inhibiting water exchange across the human RBC membrane, such that the value of the permeability coefficient is reduced by approximately an order of magnitude below the normal physiological value, will effectively render the membrane impermeable on the timescale of the PGSE NMR experiment; further inhibition will therefore result in negligible reduction in the measured root-mean-square displacement (r.m.s.d.) of diffusing water as a function of the observation time. The work also underscores the importance of using an appropriate experimental observation time if q-space data are to be used to estimate compartment dimensions and interbarrier spacing, and illustrates an expeditious method for determining this value.  相似文献   

18.
Role of the mitochondrial membrane permeability transition in cell death   总被引:6,自引:0,他引:6  
In recent years, the role of the mitochondria in both apoptotic and necrotic cell death has received considerable attention. An increase of mitochondrial membrane permeability is one of the key events in apoptotic or necrotic death, although the details of the mechanism involved remain to be elucidated. The mitochondrial membrane permeability transition (MPT) is a Ca2+-dependent increase of mitochondrial membrane permeability that leads to loss of Δψ, mitochondrial swelling, and rupture of the outer mitochondrial membrane. The MPT is thought to occur after the opening of a channel that is known as the permeability transition pore (PTP), which putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), cyclophilin D (Cyp D: a mitochondrial peptidyl prolyl-cis, trans-isomerase), and other molecule(s). Recently, significant progress has been made by studies performed with mice lacking Cyp D at several laboratories, which have convincingly demonstrated that Cyp D is essential for the MPT to occur and that the Cyp D-dependent MPT regulates some forms of necrotic, but not apoptotic, cell death. Cyp D-deficient mice have also been used to show that the Cyp D-dependent MPT plays a crucial role in ischemia/reperfusion injury. The anti-apoptotic proteins Bcl-2 and Bcl-xL have the ability to block the MPT, and can therefore block MPT-dependent necrosis in addition to their well-established ability to inhibit apoptosis.  相似文献   

19.
A possible modulation of permeabilities of membrane vesicles to anions and cations was explored by light scattering techniques, evaluated by measuring the capacity of the vesicles to shrink and swell in response to changes of the osmolarity of the incubation medium. Membrane fractions were obtained by phase partition. Purity was evaluated by detection and quantification of membrane enzyme markers: vanadate-sensitive ATPase for the plasma membrane, nitrate-sensitive ATPase for the tonoplast and azide-sensitive ATPase for mitochondria. Membrane vesicles (250 g protein) were exposed to hypertonic solutions of salts (0.6 osmolar). Kinetics of the changes in apparent absorbance at 546 nm were observed by the addition of potassium, nitrate and chloride salts. The diffusion of ions into vesicles was induced by an osmotic gradient across the membrane and brought about volume changes of vesicles. Upon addition of vesicles to the different solutions the following ion permselectivity sequences were observed: PNO 3 >PCl >PSO 4 2– and PK +PNa +>PNH 4 +.Abbreviations ATP adenosine 5-triphosphate - EDTA ethylene diaminetetraacetic acid - Tris-Mes (Tris[hydroxymethyl]aminomethane, Mes-(2-[N-Morpholino]ethanesulfonic acid) - PEG polyethylene glycol  相似文献   

20.
T Katsu  S Yoshimura  Y Fujita 《FEBS letters》1984,166(1):175-178
The action of polycations (such as polylysine and compound 48/80) on Escherichia coli was studied with use of Ca2+, K+ and TPP+ ion-selective electrodes. Rapid efflux of Ca2+ was observed when a polycation was added in cell suspension. The polycation treatment promoted a drug-inducing K+ release from the cytoplasmic membrane. TPP+ uptake was also increased by addition of a polycation. Without the polycation treatment, the uptake of TPP+ was largely suppressed due to a permeability barrier of the outer membrane. The results show that a polycation disrupted the permeability barrier of the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号