首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saltatory propagation of Ca2+ waves by Ca2+ sparks.   总被引:4,自引:0,他引:4       下载免费PDF全文
Punctate releases of Ca2+, called Ca2+ sparks, originate at the regular array of t-tubules in cardiac myocytes and skeletal muscle. During Ca2+ overload sparks serve as sites for the initiation and propagation of Ca2+ waves in myocytes. Computer simulations of spark-mediated waves are performed with model release sites that reproduce the adaptive Ca2+ release observed for the ryanodine receptor. The speed of these waves is proportional to the diffusion constant of Ca2+, D, rather than D, as is true for reaction-diffusion equations in a continuous excitable medium. A simplified "fire-diffuse-fire" model that mimics the properties of Ca2+-induced Ca2+ release (CICR) from isolated sites is used to explain this saltatory mode of wave propagation. Saltatory and continuous wave propagation can be differentiated by the temperature and Ca2+ buffer dependence of wave speed.  相似文献   

2.
Calcium ions that have been preloaded into isolated SR subfractions in the presence of ATP and pyrophosphate may be released upon addition of a large number of diverse pharmacologic substances in a manner that is effectively blocked by ruthenium red and other organic polyamines. Effective blocking substances include certain antibiotics (neomycin, gentamicin, streptomycin, clindamycin, kanamycin, and tobramycin), naturally occurring polyamines (spermine and spermidine), and a number of basic polypeptides and proteins (polylysine, polyarginine, certain histones, and protamine). These agents have only one feature in common: the presence of several amino groups. Ruthenium red, neomycin, spermine, and protamine all appear to act by blocking SR Ca2+ channels since unidirectional 45Ca2+ efflux from the vesicles is strongly inhibited by these agents. Functions ascribable to the SR Ca2+ pump are largely unaffected by these agents. Since inositol 1,4,5-trisphosphate is ineffective at inducing Ca2+ release under these conditions, we conclude that these polyamines may directly block SR Ca2+ channels at very low concentrations by a mechanism unrelated to effects on inositol 1,4,5-trisphosphate production.  相似文献   

3.
ATP has been synthesized by the purified Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum (SR) solubilized in nonionic detergent dodecyloctaoxyethylenglycol-monoether in a solution containing inorganic phosphate and glycerol by changing pH upon addition of ADP. The Ca2+ concentration is kept constant during the experiment. Optimum synthesis is found at CaCl2 = 0.6 mM and the delta pH = 2.9 +/- 0.2. The enzyme has been digested by trypsin for 1 and 20 min, and it is found that synthesis of ATP is correlated with the Ca2+-uptake into SR. The data indicate that the enzyme alone is responsible for active transport of Ca2+ in SR. The driving force for the ATP synthesis of the process may be due to various ion-protein interactions. H+ cannot substitute for Ca2+ in the synthesis of ATP but acts probably through a modification of the Ca2+ binding sites. The data give support that the integrity of the enzyme molecule between its hydrolytic site and the Ca2+-binding sites is essential for the overall Ca2+ transport.  相似文献   

4.
Thecoupling mechanism between depletion of Ca2+ stores in theendoplasmic reticulum and plasma membrane store-operated ion channelsis fundamental to Ca2+ signaling in many cell types and hasyet to be completely elucidated. Using Ca2+release-activated Ca2+ (CRAC) channels in RBL-2H3 cells asa model system, we have shown that CRAC channels are maintained in theclosed state by an inhibitory factor rather than being opened by theinositol 1,4,5-trisphosphate receptor. This inhibitory role can befulfilled by the Drosophila protein INAD (inactivation-noafter potential D). The action of INAD requires Ca2+ andcan be reversed by a diffusible Ca2+ influx factor. Thusthe coupling between the depletion of Ca2+ stores and theactivation of CRAC channels may involve a mammalian homologue of INADand a low-molecular-weight, diffusible store-depletion signal.

  相似文献   

5.
The use of high-affinity fluorescent probes for monitoring intracellular free Ca2+ in cardiac muscle is now widespread. We have investigated the consequences of introducing intracellular buffers with the properties of Fura-2 or Indo-1 on the action potential, Ca2+ transient and contractile activity of the myocardium. Our theoretical results suggest that, at the high intracellular concentrations of these fluorescent probes used on occasion to improve the signal-to-noise ratio of the emitted fluorescence, modulation of action potential profile and attenuation of the amplitudes of the Ca2+ transient and contraction can occur, together with subtle changes in the kinetics of these events.  相似文献   

6.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

7.
The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  相似文献   

8.
9.
The finding that negatively charged phospholipids activate the plasma-membrane (Ca2+ + Mg2+)-ATPase and that polycations counteract this stimulation suggest that negative charges in the environment of the ATPase protein could be important for its function. The aim of the present work was to investigate whether changing the charges on the ATPase protein itself by modifying the pH within the physiological range affects the activity of the purified plasma-membrane Ca2+ pump from stomach smooth muscle. Increasing the pH from 6.9 to 7.4 and using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) as a Ca2+ buffer, doubled the ATPase activity at 0.3 microM-Ca2+ in the presence of 100% phosphatidylcholine (PC) or after substituting 20% of the PC by negatively charged phospholipids PtdIns, PtdIns4P, phosphatidylserine and phosphatidic acid. This stimulatory effect was due to an increased affinity of the enzyme for Ca2+, while the Vmax. remained unaffected. In the case of PtdIns(4,5)P2, a stimulatory effect upon alkalinization was only observed at a PtdIns(4,5)P2 concentration of 10%. When a concentration of 20% was used, alkalinization decreased the Vmax. and no stimulatory effect on the ATPase at 0.3 microM-Ca2+ could be observed. Alkalinization not only stimulated the purified Ca2+ pump, but it also increased the activity of the enzyme in a plasma-membrane-enriched fraction from stomach smooth muscle by a factor of 2.06. The ionophore A23187-induced Ca2+ uptake in closed inside-out vesicles also increased by a factor of 2.54 if the pH was changed from 6.9 to 7.4. This finding indicates that the effect of pH is most likely to be exerted at the cytoplasmic site of the Ca2+ pump protein.  相似文献   

10.
The effect of a synthetic neutral ligand on the Ca2+ permeability of several biological membranes has been investigated. The ligand had been previously shown to possess Ca2+ -ionophoric activities in artificial phospholipid membranes. The neutral ionophore is able to transport Ca2+ across the membranes of erythrocytes and sarcoplasmic reticulum, when lipophilic anions such as tetraphenylborate and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) are present, presumably to facilitate the diffusion of the charged Ca2+ -ionophore complex across the hydrophobic core of the membrane. In mitochondria, the neutral ionophore promotes the active transport of Ca2+ in response to the negative membrane potential generated by respiration, in the presence of the specific inhibitor of the natural carrier ruthenium red.  相似文献   

11.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

12.
Y J Suzuki  W Wang  M Morad 《Cell calcium》1999,25(3):191-198
Cardiac muscle excitation-contraction coupling is controlled by the Ca(2+)-induced Ca2+ release mechanism. The present study examines the effects of a calmodulin antagonist W-7 on Ca2+ current (ICa)-induced Ca2+ release in whole cell-clamped rat ventricular myocytes. Exposure of cells to W-7 suppressed ICa, but the intracellular Ca(2+)-transients showed a lesser degree of reduction, suggesting possible enhancement of Ca(2+)-induced Ca2+ release. The effects of W-7 on the efficacy of Ca2+ release were most prominent at negative potentials. At test potentials of -30 mV, 20 microM W-7 almost completely blocked ICa, but significant Ca(2+)-transients remained, thus causing a four to six-fold increase in the efficacy of Ca(2+)-induced Ca2+ release. The depolarization-dependent Ca(2+)-transients were eliminated in absence of extracellular Ca2+, blocked by Cd2+, and were absent when the sarcoplasmic reticulum was depleted of Ca2+, implicating dependency on Ca(2+)-signaling between the L-type channel and the ryanodine receptor. W-7 mediated increase in the efficacy of Ca(2+)-induced Ca2+ release was eliminated when myocytes were dialyzed with the internal solution containing gluathione (5 mM), suggesting the possible role of cellular redox state in the regulation of Ca2+ release by the calmodulin antagonist.  相似文献   

13.
M Wakui  Y V Osipchuk  O H Petersen 《Cell》1990,63(5):1025-1032
Receptor-mediated inositol 1,4,5-trisphosphate (Ins-(1,4,5)P3) generation evokes fluctuations in the cytoplasmic Ca2+ concentration ([Ca2+]i). Intracellular Ca2+ infusion into single mouse pancreatic acinar cells mimicks the effect of external acetylcholine (ACh) or internal Ins(1,4,5)P3 application by evoking repetitive Ca2+ release monitored by Ca2(+)-activated Cl- current. Intracellular infusion of the Ins(1,4,5)P3 receptor antagonist heparin fails to inhibit Ca2+ spiking caused by Ca2+ infusion, but blocks ACh- and Ins(1,4,5)P3-evoked Ca2+ oscillations. Caffeine (1 mM), a potentiator of Ca2(+)-induced Ca2+ release, evokes Ca2+ spiking during subthreshold intracellular Ca2+ infusion. These results indicate that ACh-evoked Ca2+ oscillations are due to pulses of Ca2+ release through a caffeine-sensitive channel triggered by a small steady Ins(1,4,5)P3-evoked Ca2+ flow.  相似文献   

14.
Stopped-flow fluorimetric studies at 37 degrees C have shown that ADP, at optimal concentrations, can evoke Ca2+ or Mn2+ influx in fura-2-loaded human platelets without measurable delay. In contrast, the release of Ca2+ from intracellular stores is delayed in onset by about 200 ms. By working at a lower temperature, 17 degrees C, we have now shown that the rise in cytosolic calcium concentration ([Ca2+]i) evoked by ADP in the presence of external Ca2+ is biphasic. The use of Mn2+ as a tracer for bivalent-cation entry indicates that both phases of the ADP-evoked response are associated with influx. The fast phase of the ADP-evoked rise in [Ca2+]i, which occurs without measurable delay at both 17 degrees C and 37 degrees C, is consistent with Ca2+ entry mediated by receptor-operated channels in the plasma membrane. The delayed phase, indicated by Mn2+ quench, is coincident with the discharge of the intracellular Ca2+ stores. Forskolin did not inhibit the fast phases of ADP-evoked rise in [Ca2+]i or Mn2+ quench, but completely abolished ADP-evoked discharge of the intracellular stores, the delayed phase of the rise in [Ca2+]i observed in the presence of external Ca2+ and the second phase of Mn2+ quench. The timing of the delayed event appears to be modulated by [Ca2+]i: the delayed phase of Mn2+ quench coincides with discharge of the intracellular stores in the absence of added Ca2+, but with the second phase of the ADP-evoked rise in [Ca2+]i in the presence of extracellular Ca2+. Similarly, blockade of the early phase of Ca2+ entry by SK&F 96365 further delays the second phase. It is suggested that a pathway for Ca2+ entry which is regulated by the intracellular Ca2+ store exists in platelets. This pathway operates alongside, and appears to be modulated by the activity of other routes for Ca2+ entry into the cytosol.  相似文献   

15.
Phosphorylation by ATP of E.*Ca2 (sarcoplasmic reticulum vesicles (SRV) with bound 45Ca2+) during 5-10 ms leads to the occlusion of 2 *Ca2+/EPtot [quench by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) alone] in both "empty" (10 microM free Ca2+in) or "loaded" SRV (20-40 mM free Ca2+in). The rate of Ca2+ "internalization" from the occluded E approximately P.*Ca2 was measured by using an ADP + EGTA quench; a *Ca2+ ion that is not removed by this quench is defined as internalized. In the presence of 20-40 mM unlabeled Ca2+ inside SRV, 1 *Ca2+/EPtot is internalized from 45Ca-labeled E approximately P.*Ca2 with a first-order rate constant of kl = 34 s-1. Empty SRV take up 2 *Ca2+/EPtot with the same initial rate, but the overall rate constant is kobsd = 17 s-1. The apparent rate constant (kb = 17 s-1) for internalization of the second *Ca2+ is inhibited by [Ca]in, with K0.5 approximately 1.3 mM and a Hill coefficient of n = 1.1. These data show that the two Ca2+ ions are internalized sequentially, presumably from separate sequential sites in the channel. [32P]EP.Ca2 obtained by rapid mixing of E.Ca2 with [gamma-32P]ATP and EGTA disappears in a biphasic time course with a lag corresponding to approximately 34 s-1, followed by EP* decay with a rate constant of approximately 17 s-1. This shows that both Ca2+ ions must be internalized before the enzyme changes its specificity for catalysis of phosphoryl transfer to water instead of to ADP. Increasing the concentration of ATP from 0.25 to 3 mM accelerates the rate of 45Ca2+ internalization from 34 to 69 s-1 for the first Ca2+ and from 17 to 34 s-1 for the second Ca2+. High [ATP] also accelerates both phases of [32P]EP.Ca2 disappearance by the same factor. The data are consistent with a single form of ADP-sensitive E approximately P.Ca2 that sequentially internalizes two ions. The intravesicular volume was estimated to be 2.0 microL/mg, so that one turnover of the enzyme gives 4 mM internal [Ca2+].  相似文献   

16.
We have studied the rise in intracellular calcium concentration ([Ca2+]i) elicited in macrophages stimulated by platelet-activating factor (PAF) by using fura-2 measurements in individual cells. The [Ca2+]i increase begins with a massive and rapid release of Ca2+ from intracellular stores. We have examined the mechanism of this Ca2+ release, which has been generally assumed to be triggered by inositol trisphosphate (IP3). First, we confirmed that IP3 plays an important role in the initiation of the PAF-induced [Ca2+]i rise. The arguments are 1) an increase in IP3 concentration is observed after PAF stimulation; 2) injection of IP3 mimics the response to PAF; and 3) after introduction of heparin in the cell with a patch-clamp electrode, the PAF response is abolished. Second, we investigated the possibility of an involvement of Ca(2+)-induced Ca2+ release (CICR) in the development of the Ca2+ response. Ionomycin was found to elicit a massive Ca2+ response that was inhibited by ruthenium red or octanol and potentiated by caffeine. The PAF response was also inhibited by ruthenium red or octanol and potentiated by caffeine, suggesting that CICR plays a physiological role in these cells. Because our results indicate that in this preparation IP3 production is not sensitive to [Ca2+]i, CICR appears as a primary mechanism of positive feedback in the Ca2+ response. Taken together, the results suggest that the response to PAF involves an IP3-induced [Ca2+]i rise followed by CICR.  相似文献   

17.
Summary The preincubation of the rat red blood cell membranes in the presence of low Ca2+ levels causes an irreversible inhibition of the Ca2+-stimulated ATPase activity. The inactivation is dependent on the Ca2+ concentration and the apparent Ki is identical to the Ca2+ concentration needed to reach the half-maximal activity of the enzyme. This fact and the energy of activation (Ea = 13.8 Kcal/mol) for the inhibition suggest that Ca2+ inactivates the Ca2+-stimulated ATPase by binding to the same site which it normally occupies to activate the enzyme. It is concluded that the Ca2+-stimulated ATPase is in a dynamic equilibrium between two states: a stable ATP-bound state and an unstable ATP-free state.  相似文献   

18.
We examined the role of protein kinase C (PKC) in the mechanism and regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations elicited by an increase in the extracellular concentration of Ca(2+) ([Ca(2+)](e)) in human embryonic kidney 293 cells expressing the Ca(2+)-sensing receptor (CaR). Exposure to the PKC inhibitors bisindolylmaleimide I (GF I) or Ro-31-8220 converted oscillatory responses to transient, non-oscillatory responses, significantly reducing the percentage of cells that showed [Ca(2+)](i) oscillations but without decreasing the overall response to increase in [Ca(2+)](e). Exposure to 100 nm phorbol 12,13-dibutyrate, a direct activator of PKC, eliminated [Ca(2+)](i) oscillations. Addition of phorbol 12,13-dibutyrate at lower concentrations (3 and 10 nm) did not eliminate the oscillations but greatly reduced their frequency in a dose-dependent manner. Co-expression of CaR with constitutively active mutants of PKC (either epsilon or beta(1) isoforms) also reduced [Ca(2+)](i) oscillation frequency. Expression of a mutant CaR in which the major PKC phosphorylation site is altered by substitution of alanine for threonine (T888A) eliminated oscillatory behavior, producing [Ca(2+)](i) responses almost identical to those produced by the wild type CaR exposed to PKC inhibitors. These results support a model in which phosphorylation of the CaR at the inhibitory threonine 888 by PKC provides the negative feedback needed to cause [Ca(2+)](i) oscillations mediated by this receptor.  相似文献   

19.
Transport of Ca2+ by Yersinia pestis.   总被引:4,自引:2,他引:2       下载免费PDF全文
Low-calcium-response, or Lcr, plasmids of yersiniae are known to promote an in vitro nutritional requirement for 2.5 mM Ca2+ at 37 degrees C which, if not fulfilled, results in cessation of growth with induction of virulence functions (Lcr+). The mechanism whereby Ca2+ regulates this metabolic shift is unknown. Radioactive Ca2+ was not actively accumulated by yersiniae but was excluded by an exit reaction analogous to those described for other bacteria. Nevertheless, cultivation at 37 degrees C with 0.1 mM Ca2+, a level insufficient to prevent restriction of cell division, promoted significantly more binding of the cation by Lcr+ organisms than by plasmid-deficient Lcr- mutants. According, Lcr+ yersiniae may possess unique ligands capable of recognizing Ca2+.  相似文献   

20.
We present a model for Ca2+ efflux from vesicles of sarcoplasmic reticulum (SR). It is proposed that efflux is mediated by the Ca2+ + Mg2+-activated ATPase that is responsible for Ca2+ uptake in this system. In the normal ATPase cycle of the ATPase, phosphorylation of the ATPase is followed by a conformational change in which the Ca2+-binding sites change from being outward-facing and of high affinity to being inward-facing and of low affinity. To mediate Ca2+ efflux, it is proposed that the ATPase can adopt a conformation in which the Ca2+-binding sites are of low affinity but still outward-facing. It is shown that experimental data on the rates of Ca2+ efflux can be simulated in terms of this model, with Ca2+-binding-site affinities previously proposed to explain ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227]. Effects of Mg2+ and adenine nucleotides on efflux rates are explained. It is suggested that Ca2+ efflux from SR mediated by the ATPase could be important in excitation-contraction coupling in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号