首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic-type tissue induced in the livers of rats treated with polychlorinated biphenyls was characterized by transmission electron microscopy and high-resolution immunocytochemistry. The cells of pancreatic-type tissue were arranged as acini and in small groups. By electron microscopy the pancreatic-type tissue showed features very similar to normal pancreatic acinar tissue, such as well developed rough endoplasmic reticulum (RER), large numbers of mature zymogen granules, and a basally located nucleus. Protein A-gold imunocytochemical technique showed localization of amylase and trypsinogen over the zymogen granules and RER. These findings confirm that this tissue in the liver is morphologically and functionally identical to pancreatic acinar tissue.  相似文献   

2.
Summary Subcellular structures of pancreatic acinar cells were examined at six evenly spaced time points in the 24-h period (light cycle: 06.00 h–18.00 h) in four Wistar male rats at each time point. At each sampling point, the area and circumference of acinar cell bodies and the area, number and circumference of their cytoplasmic organelles were measured using a semiautomatic computer system for morphometry and a point-counting method.The area, number and circumference-area ratio of the cytoplasmic organelles were subject to strong circadian variations, and the cellular area and circumference exhibited weak circadian variations. Variation pattern of the cytoplasmic organelles suggested an intracellular route for secretory proteins during a 24-h span. From the results it was possible to divide the 24-h period into three stages. 1. The resting or protein synthetic stage (00.00 h to 08.00h): the area of the rough surfaced endoplasmic reticulum (rER) was strongly increased, and that of zymogen granules was clearly decreased. 2. The granule accumulation stage (08.00h to 16.00h): the area of the rER was markedly decreased; that of zymogen granules was increased. 3. The secretion stage (16.00 h to 00.00): as a result of the release of zymogen granules from the acinar cell, the area of zymogen granules decreased, and that of the rER increased. The relationship between the area of the rER and zymogen granules varied in a reciprocal manner. Other cytoplasmic organelles, namely the Golgi complex, condensing vacuoles, mitochondria and lysosomes also varied prominently during the 24-h span, corresponding to variations in the rER and zymogen granules.  相似文献   

3.
Pancreatic damage induced by injecting a large dose of arginine   总被引:2,自引:0,他引:2  
Male Wistar rats were injected intraperitoneally with a large dose of arginine (500 mg/100 g body weight) and were sacrificed 24, 48 and 72 h later. Pancreatic tissue was examined by electron microscopy to study the resulting process of degeneration. Degeneration started with disorganization of the rough endoplasmic reticulum into whorls with a concomitant decrease in the numbers of zymogen granules. The main changes in acinar cells after 24 h were partial distension of the endoplasmic reticulum, whorls of agranular membranes encircling zymogen granules and perinuclear vacuoles. At this time large sequestered areas in the cytoplasm contained disarranged rough endoplasmic reticulum and degraded zymogen granules. The mitochondria showed only slight changes. After 48 h, dissociation and necrosis of acinar cells were noted. Subsequently, the necrotic cells were replaced by interstitial tissue composed of leucocytes and fibroblasts. It was concluded that a large dose of arginine is toxic to the rat pancreas when injected intraperitoneally. The early morphological changes of the acinar cells may be related to metabolic alterations associated with the endoplasmic reticulum. The disorganization of the endoplasmic reticulum and the reduced number of zymogen granules may indicate disturbance of protein synthesis. The focal sequestration and degradation of the cytoplasm seemed to represent changes of the acinar cells associated with removal of damaged organelles.  相似文献   

4.
The binding of concanavalin A to the plasmalemma of acinar carcinoma cells was characterized by electron microscopy utilizing horseradish peroxidase. Heavy labeling due to specific concanavalin A binding was detected on the plasmalemma of undifferentiated carcinoma cells lacking zymogen maturation, neoplastic cells of intermediate differentiation with only occasional zymogen granules, and highly differentiated acinar carcinoma cells containing numerous cytoplasmic zymogen granules. The plasmalemma of acinar carcinoma cells was also compared to the normal pancreatic acinar cell plasmalemma by measurement of specific 125I-labeled concanavalin A binding. Although only about one-third of pancreatic acinar carcinoma cells demonstrate mature zymogen differentiation, the acinar carcinoma had a full complement of normal plasmalemma receptors for 125I-labeled concanavalin A. It is concluded that, unlike normal pancreas, the presence of concanavalin A receptors on the plasmalemma of acinar carcinoma cells is not a specific membrane marker for differentiated cells containing zymogen granules.  相似文献   

5.
Secretory stress proteins (SSP) are a family of proteins including isoforms of pancreatitis-associated protein (PAP) and pancreatic stone protein (PSP/reg). In vitro exposure to trypsin results in the formation of insoluble fibrillar structures. SSP are constitutively secreted into pancreatic juice at low levels. The WBN/Kob rat is a model for chronic pancreatitis, displaying focal inflammation, destruction of the parenchyma and changes in the architecture of the acinar cell; the synthesis and secretion of SSP are also increased. We have investigated the secretory apparatus by SSP immunohistochemistry at the light- and electron-microscopical (EM) levels. Immunocytochemistry of PSP/reg in Wistar control rats reveals low levels, with individual acinar cells exhibiting high immunoreactivity in zymogen granules. PAP is not detectable. In the WBN/Kob rat, PSP/reg and PAP immunoreactivity is markedly increased. Double immunofluorescence for PSP/reg and PAP I or II demonstrates that these proteins colocalize to the same cell. Acinar cells change their secretory architecture by fusion of zymogen granules and elongation of the fused organelles. The immunogold technique has demonstrated an increase of SSP in zymogen granules in WBN/Kob rats. PSP/reg-positive zymogen granules fuse to form elongated structures with fibrillar contents. An extensive PSP/reg-positive fibrillar network is established in the cytosol. Extracellular fibrils have been observed in several ductules. Thus, SSP-derived fibrils form concomitantly with acinar damage in the WBN/Kob rat. Based on the known tryptic cleavage site of SSP, the in vivo generation of fibrils is presumably the result of premature trypsin activation.  相似文献   

6.
Quantitative changes in the pancreatic acinar cell organelles were studied in BALB/c mice injected with 1.0 ml fresh rabbit serum intraperitoneally. Groups of 5 mice were killed at 0, 1, 3, 6 and 12 h after the serum injection. Pancreatic tissue was processed for electron microscopy by glutaraldehyde and osmium tetroxide fixation and Epon embedding. The proportions of acinar cell cytoplasm (volume fractions) occupied by zymogen granules, granular endoplasmic reticulum, Golgi apparatus, mitochondria and lysosomes (including autophagosomes) were determined by the point counting method from electron micrographs. The volume fraction of lysosomes increased during the first 3 h and remained markedly elevated up to 12 h. The volume fractions of zymogen granules increased from 12 to 28% in 12 h. It was concluded that the secretory mechanism of pancreatic acinar cells was injured by the foreign serum. The injury caused accumulation of zymogen granules and increased autophagic activity in the acinar cells.  相似文献   

7.
《Biotechnic & histochemistry》2013,88(5-6):291-293
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

8.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

9.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

10.
This study compares the susceptibility of pancreatic acinar cells and zymogen granules against oxidative injury and analyzes the mechanisms involved. Zymogen granules and acinar cells, isolated from rat pancreas, were exposed to a reaction mixture containing xanthine oxidase, hypoxanthine, and chelated iron. Cell function and viability were assessed by various techniques. Trypsin activation was quantified by an Elisa for trypsinogen activating peptide. Integrity of granules was determined by release of amylase. The reaction mixture rapidly generated radicals as assessed by deoxyribose and luminol assays. This oxidative stress caused lysis of granules in a matter of minutes but significant cell death only after some hours. Nevertheless, radicals initiated intracellular vacuolization, morphological damage to zymogen granules and mitochondria, increase in trypsinogen activating peptide, and decrease in ATP already after 5–30 min. Supramaximal caerulein concentrations also caused rapid trypsin activation. Addition of cells but not of granules reduced deoxyribose oxidation, suggesting that intact cells act as scavengers. Caerulein pretreatment only slightly increased the susceptibility of cells but markedly that of granules. In conclusion, isolated zymogen granules are markedly more susceptible to oxidative injury than intact acinar cells, in particular, in early stages of caerulein pancreatitis. The results show that oxidative stress causes a rapid trypsin activation that may contribute to cell damage by triggering autodigestion. Zymogen granules and mitochondria appear to be important targets of oxidative damage inside acinar cells. The series of intracellular events initiated by oxidative stress was similar to changes seen in early stages of pancreatitis.  相似文献   

11.
A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells   总被引:10,自引:0,他引:10  
Despite our general understanding that members of the SNARE superfamily participate in diverse intracellular docking/fusion events, the physiological role of the majority of SNAREs in the intact organism remains elusive. In this study, through targeted gene knockout in mice, we establish that VAMP8/endobrevin is a major player in regulated exocytosis of the exocrine pancreas. VAMP8 is enriched on the membrane of zymogen granules and exists in a complex with syntaxin 4 and SNAP-23. VAMP8-/- mice developed normally but showed severe defects in the pancreas. VAMP8 null acinar cells contained three times more zymogen granules than control acinar cells. Furthermore, secretagogue-stimulated secretion was abolished in pancreatic fragments derived from VAMP8-/- mice. In addition, VAMP8-/- mice were partially resistant to supramaximal caerulein-induced pancreatitis. These results suggest a major physiological role of VAMP8 in regulated exocytosis of pancreatic acinar cells by serving as a v-SNARE of zymogen granules.  相似文献   

12.
Synthetic analogues of L-enkephalin--tageflar and dalargin were studied for the treatment of experimentally-induced pancreatitis of rats. It was concluded that morphometric features of an intact part of the pancreas were not significantly changed with the use of tageflar. The intensity of 14C-leucine inclusion in the proteins of an intact part of the pancreas was strongly suppressed and the cytoplasm of exocrine pancreocytes was overloaded with zymogen granules. With the use of dalargin, a moderate hypertrophy of exocrine pancreocytes and intensification of 14C-leucine inclusion developed gradually. The number and disposition of zymogen granules were not significantly changed, as compared to acute pancreatitis. Both drugs disturbed the process of acinar reconstruction into tubular complexes in the marginal areas.  相似文献   

13.
Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B, N-acetyl-beta-glucosaminidase, and beta-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000 g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.  相似文献   

14.
The localization of the protein-disulfide interchange enzyme, glutathione-insulin transhydrogenase (GIT), in rat and mouse pancreas was studied by protein A-gold immunocytochemistry, immunodiffusion, and assay of enzymatic activity. Immunocytochemistry on tissue sections using antibody to GIT and protein A-gold complex indicated the presence of GIT in alpha and beta cells in islets as well as acinar cells. The beta cells in obese (ob/ob) hyperinsulinemic mice showed increased GIT immunoreactivity. In both alpha and beta cells, GIT immunoreactive sites were associated predominantly with secretory granules. In pancreas from rats injected with glibenclamide, the degranulated beta cells contained GIT immunoreactive sites on the cisternal surface of the rough endoplasmic reticulum (RER). In acinar cells, the RER, Golgi elements, condensing vacuoles, and zymogen granules possessed GIT immunoreactive sites as did mitochondria. Immunocytochemistry on sections of isolated subcellular fractions showed that GIT was associated with different membranes. The enzymatic activity of GIT was found in the following order: Golgi elements greater than mitochondria greater than microsomes greater than zymogen granules greater than cytosol. In Ouchterlony immunodiffusion tests, each subcellular fraction showed a precipitin band which was continuous with that of purified GIT, a result indicating the presence of immunologically identical GIT in all fractions.  相似文献   

15.
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.  相似文献   

16.
Summary Pancreatic acinar cells of rats obtained before (21 days of age) and after (31 and 42 days) weaning were morphometrically examined at six evenly spaced times during 24 h.Morphometric analysis demonstrated clear-cut variations in the average volume of the cell and nucleus, the incidence of binucleate acinar cells, and the volume and numerical densities of various cytoplasmic organelles during 24 h, at each stage. The daily mean values and variation of these parameters at 21 days clearly differed from those at 31 and 42 days. In particular, changes in the volume densities of rER and zymogen granules were bimodal at 21 days, whereas they were unimodal at 31 and 42 days. Moreoever, some parameters also differed between 31 and 42 days, the main difference being an 8 h time shift in the variation curves of the volume densities of rER and zymogen granules.These findings indicate that morphometric analysis of the subcellular structures of pancreatic acinar cells during 24 h can be used to determine their developmental stage.  相似文献   

17.
Transgenic mouse lines expressing a soluble form of human nectin-2 (hNectin-2Ig Tg) exhibited distinctive elevation of amylase and lipase levels in the sera. In this study, we aimed to clarify the histopathology and to propose the transgenic mouse lines as new animal model for characteristic pancreatic exocrine defects. The significant increase of amylase and lipase levels in sera of the transgenic lines approximately peaked at 8 weeks old and thereafter, plateaued or gradually decreased. The histopathology in transgenic acinar cells was characterized by intracytoplasmic accumulation of abnormal proteins with decrease of normal zymogen granules. The hNectin-2Ig expression was observed in the cytoplasm of pancreatic acinar cells, which was consistent with zymogen granules. However, signals of hNectin-2Ig were very weak in the transgenic acinar cells with the abnormal cytoplasmic accumulaion. The PCNA-positive cells increased in the transgenic pancreas, which suggested the affected acinar cells were regenerated. Acinar cells of hNectin-2Ig Tg had markedly small number of zymogen granules with remarkable dilation of the endoplasmic reticulum (ER) lumen containing abundant abnormal proteins. In conclusion, hNectin-2Ig Tg is proposed as a new animal model for characteristic pancreatic exocrine defects, which are due to the ER stress induced by expression of mutated cell adhesion molecule that is a soluble form of human nectin-2.  相似文献   

18.
Morphometrical and immunocytochemical techniques have been applied in order to characterize the pancreatic acinar cells located in peri-insular and tele-insular regions of the pancreas. The results obtained, have shown that the acinar cells of the peri-insular regions are twice as large as those of the tele-insular. On the other hand, the volume density of all organelles, except that of the zymogen granules, remains constant implying that the larger the cell, the larger are its organelles. For the zymogen granules however, their volume density was found to be higher in peri-insular acinar cells. The immunofluorescence technique applied for the demonstration of amylase and chymotrypsinogen has confirmed the presence of an inhomogeneity in the staining. Acinar cells in peri-insular regions show a brighter fluorescent staining. At the electron microscope level, both amylase and chymotrypsinogen were demonstrated in all organelles of acinar cells involved in protein secretion. Quantitative evaluations demonstrate no major differences in the intensity of labeling per micron2 between organelles of peri-insular and tele-insular cells. These results put together demonstrate that peri-insular acinar cells contain higher amounts of secretory proteins because their organelles are larger and their zymogen granules are more numerous. The partition of the exocrine pancreas into peri- and tele-insular regions, confirmed herein through morphometrical and cytochemical techniques, is discussed in relation to the possible influence of the endocrine secretion arising from the islets of Langerhans on the surrounding acinar cells.  相似文献   

19.
Summary Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B,N-acetyl-β-glucosaminidase, and β-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.  相似文献   

20.
SULFATE METABOLISM IN PANCREATIC ACINAR CELLS   总被引:8,自引:6,他引:2       下载免费PDF全文
The metabolism of inorganic sulfate in pancreatic acinar cells was studied by electron microscope radioautography in mice injected with sulfate-35S. Labeled sulfate was concentrated in the Golgi complex at 10 min. Within 30 min, much of the radioactive material had been transferred to condensing vacuoles. These were subsequently transformed into zymogen granules. By 4 hr after injection, some of the zymogen granules with radioactive contents were undergoing secretion, and labeled material was present in the pancreatic duct system. The Golgi complex in pancreatic acinar cells is known to be responsible for concentrating and packaging digestive enzymes delivered to it from the endoplasmic reticulum. Our work demonstrates that the Golgi complex in these cells is also engaged in the manufacture of sulfated materials, probably sulfated mucopolysaccharides, which are packaged along with the enzymes in zymogen granules and released with them into the pancreatic secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号