首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The pathogenesis-related accumulation of superoxide radical anions (O·− 2) and hydrogen peroxide (H2O2) was comparatively analyzed in a barley line (Hordeum vulgare L. cv Sultan-5) carrying the powdery mildew (Blumeria graminis f.sp. hordei, Speer, Bgh) resistance gene Mla12, and in susceptible mutants defective in Mla12 or in genes “required for Mla12-specified disease resistance” (Rar1 and Rar2). In-situ localization of reactive oxygen intermediates was performed both by microscopic detection of azide-insensitive nitroblue tetrazolium (NBT) reduction or diaminobenzidine (DAB) polymerization, and by an NBT-DAB double-staining procedure. The Mla12-mediated hypersensitive cell death occurred either in attacked epidermal cells or adjacent mesophyll cells of wild-type plants. Whole-cell H2O2 accumulation was detected in dying cells, while O·− 2 emerged in adjacent cells. Importantly, all susceptible mutants lacked these reactions. An oxalate oxidase, which is known to generate H2O2 and has been implicated in barley resistance against the powdery mildew fungus, was not differentially expressed between the wild type and all mutants. The results demonstrate that the Rar1 and Rar2 gene products, which are control elements of R-gene-mediated programmed cell death, also control accumulation of reactive oxygen intermediates but not the pathogenesis-related expression of oxalate oxidase. Received: 7 January 2000 / Accepted: 2 June 2000  相似文献   

2.
In order to characterise the effect of ectomycorrhiza on Na+-responses of the salt-sensitive poplar hybrid Populus × canescens, growth and stress responses of Paxillus involutus (strain MAJ) were tested in liquid cultures in the presence of 20 to 500 mM NaCl, and the effects of mycorrhization on mineral nutrient accumulation and oxidative stress were characterised in mycorrhizal and non-mycorrhizal poplar seedlings exposed to 150 mM NaCl. Paxillus involutus was salt tolerant, showing biomass increases in media containing up to 500 mM NaCl after 4 weeks growth. Mycorrhizal mantle formation on poplar roots was not affected by 150 mM NaCl. Whole plant performance was positively affected by the fungus because total biomass was greater and leaves accumulated less Na+ than non-mycorrhizal plants. Energy dispersive X-ray microanalysis using transmission electron microscopy analysis of the influence of mycorrhization on the subcellular localisation of Na+ and Cl in roots showed that the hyphal mantle did not diminish salt accumulation in root cell walls, indicating that mycorrhization did not provide a physical barrier against excess salinity. In the absence of salt stress, mycorrhizal poplar roots contained higher Na+ and Cl concentrations than non-mycorrhizal poplar roots. Paxillus involutus hyphae produced H2O2 in the mantle but not in the Hartig net or in pure culture. Salt exposure resulted in H2O2 formation in cortical cells of both non-mycorrhizal and mycorrhizal poplar and stimulated peroxidase but not superoxide dismutase activities. This shows that mature ectomycorrhiza was unable to suppress salt-induced oxidative stress. Element analyses suggest that improved performance of mycorrhizal poplar under salt stress may result from diminished xylem loading of Na+ and increased supply with K+.  相似文献   

3.
Evidence for the participation of reactive oxygen species (ROS) and antioxidant systems in ectomycorrhizal (ECM) establishment is lacking. In this paper, we evaluated ROS production and the activities of superoxide dismutase (SOD) and catalase (CAT) during the early contact of the ECM fungus Pisolithus tinctorius with the roots of Castanea sativa (chestnut tree). Roots were placed in contact with P. tinctorius mycelia, and ROS production was evaluated by determining the levels of H2O2 and O2 ·− during the early stages of fungal contact. Three peaks of H2O2 production were detected, the first two coinciding with O2 ·− bursts. The first H2O2 production peak coincided with an increase in SOD activity, whereas CAT activity seemed to be implicated in H2O2 scavenging. P. tinctorius growth was evaluated in the presence of P. tinctorius-elicited C. sativa crude extracts prepared during the early stages of fungal contact. Differential hyphal growth that matched the H2O2 production profile with a delay was detected. The result suggests that during the early stages of ECM establishment, H2O2 results from an inhibition of ROS-scavenging enzymes and plays a role in signalling during symbiotic establishment.  相似文献   

4.
The latency phase, growth rate, cell yield and end-products of Lactobacillus sanfranciscensis CB1 were affected by oxygen and the supply of 225 μM Mn2+. Mn2+ was especially related to the highest substrate consumption. Aerobiosis and Mn2+ supply were responsible for the highest superoxide dismutase activity. An auto-inhibitory accumulation of H2O2 meant that the survival of air-grown cells supplied with Mn2+ rapidly decreased during the stationary phase. As shown by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Mn2+ supply influenced protein expression. As shown by non-denaturating zymograms, Lb. sanfranciscensis CB1 expressed an approximately 12.5-kDa superoxide dismutase, which is probably Mn-dependent. The enzyme was insensitive to H2O2 treatment, was not induced by the presence of paraquat under aerobic conditions and was relatively stable at pH 4.0. Sourdoughs that contained high levels of oxygen enhanced cell growth, acidification and acetic acid production by Lb. sanfranciscensis CB1. Received: 24 July 1998 / Received last revision: 11 November 1998 / Accepted: 13 November 1998  相似文献   

5.
In this study, we characterized a putative peroxidase Prx1 of Candida albicans by: 1) demonstrating the thioredoxin-linked peroxidase activity with purified proteins, 2) examining the sensitivity to several oxidants and the accumulation of intracellular reactive oxygen species with a null mutant (prx1Δ), a mutant (C69S) with a point mutation at Cys69, and a revertant, and 3) subcelluar localization. Enzymatic assays showed that Prx1 is a thioredoxin-linked peroxidase which reduces both hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BOOH). Compared with two other strong H2O2 scavenger mutants for TSA1 and CAT1, prx1Δ and C69S were less sensitive to H2O2, menadione and diamide at all concentrations tested, but were more sensitive to low concentration of t-BOOH. Intracellular reactive oxygen species accumulated in prx1Δ and C69S cells treated with t-BOOH but not H2O2. These results suggest that peroxidase activity of Prx1 is specified to t-BOOH in cells. In both biochemical and physiological cases, the evolutionarily conserved Cys69 was found to be essential for the function. Immunocytochemical staining revealed Prx1 is localized in the cytosol of yeast cells, but is translocated to the nucleus during the hyphal transition, though the significances of this observation are unclear. Our data suggest that PRX1 has a thioredoxin peroxidase activity reducing both t-BOOH and H2O2, but its cellular function is specified to t-BOOH.  相似文献   

6.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

7.
Pulse-treatment of U-937 human promonocytic cells with cadmium chloride followed by recovery caused caspase-9/caspase-3-dependent, caspase-8-independent apoptosis. However, pre-incubation with the glutathione (GSH)-suppressing agent DL-buthionine-(S,R)-sulfoximine (cadmium/BSO), or co-treatment with H2O2 (cadmium/H2O2), switched the mode of death to caspase-independent necrosis. The switch from apoptosis to necrosis did not involve gross alterations in Apaf-1 and pro-caspase-9 expression, nor inhibition of cytochrome c release from mitochondria. However, cadmium/H2O2-induced necrosis involved ATP depletion and was prevented by 3-aminobenzamide, while cadmium/BSO-induced necrosis was ATP independent. Pre-incubation with BSO increased the intracellular cadmium accumulation, while co-treatment with H2O2 did not. Both treatments caused intracellular peroxide over-accumulation and disruption of mitochondrial transmembrane potential (ΔΨm). However, while post-treatment with N-acetyl-L-cysteine or butylated hydroxyanisole reduced the cadmium/BSO-mediated necrosis and ΔΨm disruption, it did not reduce the effects of cadmium/H2O2. Bcl-2 over-expression, which reduced peroxide accumulation without affecting the intracellular GSH content, attenuated necrosis generation by cadmium/H2O2 but not by cadmium/BSO. By contrast, AIF suppression, which reduced peroxide accumulation and increased the GSH content, attenuated the toxicity of both treatments. These results unravel the existence of two different oxidation-mediated necrotic pathways in cadmium-treated cells, one of them resulting from ATP-dependent apoptosis blockade, and the other involving the concurrence of multiple regulatory factors.  相似文献   

8.
In response to Clostera anachoreta larvae attack, poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) leaves produced a high level of hydrogen peroxide (H2O2). Histochemical localization revealed that H2O2 was mainly localized in herbivore-wounded zones and might spread through the veins. The activities of three H2O2-scavenging enzymes, i.e., peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), were also enhanced in herbivore-wounded leaves, and exhibited an opposite pattern to the accumulation of H2O2. It was found that diphenylene iodonium chloride (DPI, a special inhibitor of NADPH oxidase) treatment significantly inhibited the accumulation of H2O2 induced by herbivory damage. Moreover, DPI treatment led to an obvious decrease in the activities of POD, APX, and CAT. The results indicated that NADPH oxidase contributed to the accumulation of H2O2 and the increase in activities of H2O2-scavenging enzymes in poplar leaves induced by herbivory damage. The balance between H2O2-production pathway and H2O2-scavenging enzymes led to the tolerable level of H2O2 acting in P. simonii × P. pyramidalis ‘Opera 8277’ cuttings in response to herbivory damage.  相似文献   

9.
Effects of exogenous H2O2 application on vinblastine (VBL) and its precursors, vindoline (VIN), catharanthine (CAT) and α-3′,4′-anhydrovinblastine (AVBL), were measured in Catharanthus roseus seedlings in order to explore possible correlation of VBL formation with oxidative stress. VBL accumulation has previously been shown to be regulated by an in vitro H2O2-dependent peroxidase (POD)-like synthase. Experimental exposure of plants to different concentrations of H2O2 showed that endogenous H2O2 and alkaloid concentrations in leaves were positively elevated. The time-course variations of alkaloid concentrations and redox state, reflected by the concentrations of H2O2, ascorbic acid (AA), oxidative product of glutathione (GSSG) and POD activity, were significantly altered due to H2O2 application. The further correlation analysis between alkaloids and redox status indicated that VBL production was tightly correlated with redox status. These results provide a new link between VBL metabolisms and redox state in C. roseus.  相似文献   

10.
Technical bottlenecks in protein production and secretion often limit the efficient and robust industrial use of microbial enzymes. The potential of non-thermal atmospheric pressure plasma to overcome these technical barriers was examined. Spores of the fermenting fungus Aspergillus oryzae (A. oryzae) were submerged in potato dextrose broth (PDB) (5 × 106 per ml) and treated with micro dielectric barrier discharge plasma at an input voltage of 1.2 kV and current of 50 to 63 mA using nitrogen as the feed gas. The specific activity of α-amylase in the broth was increased by 7.4 to 9.3% after 24 and 48 h of plasma treatment. Long-lived species, such as NO2 and NO3, generated in PDB after plasma treatment may have contributed to the elevated secretion of α-amylase. Observations after 24 h of plasma treatment also included increased accumulation of vesicles at the hyphal tip, hyphal membrane depolarization and higher intracellular Ca2+ levels. These results suggest that long-lived nitrogen species generated in PDB after plasma treatment can enhance the secretion of α-amylase from fungal hyphae by depolarizing the cell membrane and activating Ca2+ influx into hyphal cells, eventually leading to the accumulation of secretory vesicles near the hyphal tips.  相似文献   

11.
We describe a strategy to establish cyanobacterial strains with high levels of H2 production that involves the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering. Nostoc sp. PCC 7422 was chosen from 12 other heterocystous strains, because it has the highest nitrogenase activity. We sequenced the uptake hydrogenase (Hup) gene cluster as well as the bidirectional hydrogenase gene cluster from the strain, and constructed a mutant (ΔhupL) by insertional disruption of the hupL gene. The ΔhupL mutant produced H2 at 100 μmoles mg chlorophyll a -1 h-1, a rate three times that of the wild-type. The ΔhupL cells could accumulate H2 to about 29% (v/v) accompanied by O2 evolution in 6 days, under a starting gas phase of Ar + 5% CO2. The presence of 20% O2 in the initial gas phase inhibited H2 accumulation of the ΔhupL cells by less than 20% until day 7.  相似文献   

12.
The hyphal responses of an A. fumigatus isolate to a trizolederivative-fluconazole (FCZ) were studied with a Bio-Cell Tracer system. The numerical data were recorded as the original growth rate (Pre-GR), the time needed for FCZ reaching to its target in hypha (τon), the growth rate under the FCZ effect (Exp-GR) and the growth rate after FCZ was removed (Post-GR). Based on above numerical data, the inhibitory rates in the exposure and post exposure periods were calculated as the Exp-I% and Post-I% values. It was found there were variable inhibitory rate values (I%) in individual hyphae corresponding to different FCZ concentrations. It was shown by correlation analysis of the numerical data that the Pre-GR values were negatively correlated with the τon values and positively correlated with both the Exp-I% and Post-I% values. Additionally, the τon values are negatively correlated with the Exp-I% and Post-I% values. Those results suggested that the hyphal growth rate and the susceptibility of the FCZ target be the important factors to determine the hyphal responses to the FCZ effect. Serial morphological alternations were captured while the hyphal growth curves were changing under the FCZ effects. Of the morphological data, the interesting alternations were visualized when the hyphae were affected by 16 μg/ml FCZ. As shifting of the hyphal growth curves, the hyphae were repeatedly seen as swollen tips and germination from the swollen sites. It is indicated that the hyphal tips are the most sensitive parts of this mycelia fungus to the FCZ affects. Additionally, because the hyphal regrowth was observed as germination from the swollen tips before FCZ was removed, an adaptation phenomenon could be proposed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
14.
NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
 NO和H2O2是参与植物抗非生物胁迫反应的重要信号分子, 为了确定NO和H2O2在大豆(Glycine max)根尖和根边缘细胞(root border cells, RBCs)耐铝反应中的作用及其相互关系, 以‘浙春3号’大豆为材料, 研究了铝毒胁迫下大豆根尖内源NO和H2O2的变化, 以及外源NO和H2O2诱导大豆根尖和RBCs的耐铝反应。结果表明, 50 μmol·L–1 Al处理48 h显著抑制大豆根的伸长, 提高Al在根尖的积累, 同时显著增加根尖内源NO和H2O2含量。施加0.25 mmol·L–1外源NO供体亚硝基铁氰化钠(Na2[Fe(CN)5NO]·2H2O, sodium nitroprusside, SNP)和0.1 mmol·L–1H2O2, 能有效地缓解Al对大豆根伸长的抑制、根尖Al积累和RBCs 的死亡, 该缓解作用可以被0.05 mmol·L–1 NO清除剂2-(4- 羧基苯)-4,4,5,5- 四甲基咪唑-1- 氧-3- 氧化物, 钾盐(C14H16N2O4·K, carboxy-PTIO, cPTIO)和150 U·mL–1 H2O2清除酶(catalase, CAT)逆转。并且外源NO能够显著促进根尖H2O2的积累, 而外源H2O2对根尖NO的含量无显著影响。这表明NO和H2O2是诱导大豆根尖及RBCs耐铝反应的两种信号分子, NO可能通过调控H2O2的形成, 进而诱导大豆根尖及RBCs的耐铝反应。  相似文献   

15.
Zinnia elegans stems with 3,3′, 5, 5′-tetramethylbenzidine (TMB) in the presence and in the absence of catalase reveals the presence of xylem oxidase activities in the H2O2-producing lignifying xylem cells. This staining of lignifying xylem cells with TMB is the result of two independent mechanisms: one is the catalase-sensitive (H2O2-dependent) peroxidase-mediated oxidation of TMB, and the other the catalase-insensitive (H2O2-independent) oxidation of TMB, probably due to the oxidase activity of xylem peroxidases. The response of this TMB-oxidase activity of xylem peroxidases to different exogenous H2O2 concentrations was studied, and the results showed that H2O2 at high concentrations (100–1,000 mM) clearly acted as an inactivator of this xylem TMB-oxidase activity, although some inhibitory effect could still be appreciated at 10 mM H2O2. This xylem TMB-oxidase activity resided in a strongly basic cell wall-bound peroxidase (pl about 10.5). Given such a scenario, it may be concluded that this TMB-oxidase activity of peroxidase is located in tissues capable of sustaining H2O2 production, and that the in situ oxidase activity shown by this enzyme is inactivated by high H2O2 concentrations. Received 20 April 1999/ Accepted in revised form 16 August 1999  相似文献   

16.
Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-β (TGF-β), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-β (5 ng/mL), or H2O2 (100 μM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. A significant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 μM), thyroid-stimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 μM iodine, EGF (5 ng/mL) and TGF-β (5 ng/mL), or H2O2 (100 μM) (p<0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4±0.2 to 2.25±0.4 mU/μg DNA with 10 nM selenite and 2.6+0.4 mU/μg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-β, EGF, iodide, and even H2O2  相似文献   

17.
The first responses in spruce [Picea abies (L.) Karst.] cells induced by elicitors (N-acetylglucosamine oligomers) from ectomycorrhizal fungi have been described as follows: efflux of Cl and K+, influx of Ca2+, extracellular alkalinization, phosphorylation of a 63-kDa protein (pp63), dephosphorylation of a 65-kDa protein (pp65) and synthesis of H2O2 (Salzer et al. 1996, Planta 198: 118–126). In order to obtain new insights into the triggering mechanism and the sequence of these rapid responses we used compounds which are known to activate or block specific steps within an elicitor-induced signal transduction cascade in plant cells. Comparable to elicitors the two protein phosphatase inhibitors, cantharidin and calyculin A, as well as mastoparan, an activator of trimeric G-proteins, were able to induce the release of Cl and K+ from spruce cells and the alkalinization of the medium. Half-maximal activation of the alkalinization occurred at 133 nM calyculin A, 2.3 μM cantharidin and 1.6 μ mastoparan. The structural analogue of mastoparan, Mas 17, which has no G-protein-stimulating properties, was unable to trigger the above-mentioned reactions. In addition, cantharidin and calyculin A induced an increased synthesis of H2O2 in spruce cells which was prolonged in comparison to the elicitor-induced transient formation of H2O2. Also, the cantharidin-induced release of K+ was more pronounced and longer lasting than that caused by elicitors from the ectomycorrhizal fungus Hebeloma crustuliniforme (Bull. ex Fries.) and N-acetylglucosamine oligomers. Furthermore, cantharidin, calyculin A and mastoparan induced the phosphorylation of pp63. Remarkably, the protein kinase inhibitor, staurosporine, inhibited all the rapid responses described above, no matter whether they were triggered by fungal elicitors or by the protein phosphatase inhibitors. These results indicate that in the initial signalling events in spruce cells, essential protein phosphorylations occur either as an (auto) phosphorylation of a membrane-bound receptor kinase prior to the activation of a G-protein or (and) immediately downstream of the activated G-protein in a phosphorylation cascade and are the basic requirements for the ion fluxes following downstream. Received: 24 April 1998 / Accepted: 23 July 1998  相似文献   

18.
Summary The effect of low concentrations of hydrogen peroxide (H2O2) (5 × 10−7−9.5 × 10−7 M) on cell growth and antibody production was investigated with murine hybridoma cells (Mark 3 and anti-hPL) in culture. Cell growth, measured by flow cytometry with morphological parameters, was significantly stimulated by H2O2 (8 × 10−7 M) but H2O2 concentration of 7 × 10−6 M and above increased cell death. H2O2 stimulation of antibody production was nonsignificant. The metabolism of cells treated with 8 × 10−7 or 1 × 10−5 M H2O2 was similar to that of the control in terms of glucose and glutamine consumption, lactate and ammonia production, and amino acid concentrations in the medium. The concentrations of lactate dehydrogenase, a marker of cell death, in test and control cells were similar. However, concentrations of intracellular free radicals measured by flow cytometry with dihydrorhodamine 123 (DHR 123) and dichlorofluorescein diacetate (DCFH-DA) as fluorochromes were different. The reactive oxygen species content of cells in 8 × 10−7 M H2O2 was similar to that of the controls, but there was a sudden, marked production of superoxide anions (detected with DHR 123) and H2O2 or peroxides (detected with DCFH-DA) by cells incubated with 1 × 10−5 M H2O2 which increased with increasing H2O2 until cell death.  相似文献   

19.
Manganese peroxidase (Mn peroxidase) catalyses the oxidation of Mn(II) to Mn(III), a diffusible non-specific oxidant likely to be involved in the transformation of polyphenolic macromolecules from brown coal by the white-rot fungus Phanerochaete chrysosporium. We report here that solubilised macromolecules from Morwell brown coal were depolymerised by Mn(III) ions when incubated under hyperbaric O2. However, under N2 or air they were polymerised, suggesting that net depolymerisation by Mn(III) requires molecular oxygen to inhibit coupling of coal radicals. Coal macromolecules were also polymerised when separated by a semipermeable membrane from a culture of P. chrysosporium or from a solution of Mn peroxidase, Mn(II) and H2O2, probably by Mn(III) crossing the membrane. In oxygenated cultures in which Mn peroxidase␣was up-regulated by Mn(II), the extent of depolymerisation correlated with cumulative Mn peroxidase activity suggesting that Mn-peroxidase-generated Mn(III) has a central role in initial depolymerisation of coal molecules in vivo. However, mutant ME446-B17-1, which produces Mn peroxidase but not lignin peroxidase, polymerised coal macromolecules in oxygenated cultures. In sum, it appears Mn peroxidase can both polymerise and depolymerise brown coal macromolecules and that, in vivo, both hyperbaric O2 and lignin peroxidase are also required to force net depolymerisation to products assimilable by cells. Received: 4 September 1997 / Received revision: 29 January 1998 / Accepted: 30 January 1998  相似文献   

20.
We analyzed the pathogenesis-related generation of H2O2 using the microscopic detection of 3,3-diaminobenzidine polymerization in near-isogenic barley (Hordeum vulgare L.) lines carrying different powdery mildew (Blumeria graminis f.sp. hordei) resistance genes, and in a line expressing chemically activated resistance after treatment with 2,6-dichloroisonicotinic acid (DCINA). Hypersensitive cell death in Mla12 and Mlg genotypes or after chemical activation by DCINA was associated with H2O2 accumulation throughout attacked cells. Formation of cell wall appositions (papillae) mediated in Mlg and mlo5 genotypes and in DCINA-activated plants was paralleled by H2O2 accumulation in effective papillae and in cytosolic vesicles of up to 2 μm in diameter near the papillae. H2O2 was not detected in ineffective papillae of cells that had been successfully penetrated by the fungus. These findings support the hypothesis that H2O2 may play a substantial role in plant defense against the powdery mildew fungus. We did not detect any accumulation of salicylic acid in primary leaves after inoculation of the different barley genotypes, indicating that these defense responses neither relied on nor provoked salicylic acid accumulation in barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号