首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether apoptotic and necrotic myocyte cell death occur acutely and chronically after infarction, the formation of DNA strand breaks and the localization of myosin monoclonal antibody labeling were analyzed in the surviving myocardium from 20 min to 1 month. DNA strand breaks in myocyte nuclei were detected as early as 3 h following coronary artery occlusion and were still present at 1 month. This cellular process was characterized biochemically by internucleosomal DNA fragmentation which produced DNA laddering on agarose gel electrophoresis. Quantitatively, 155 myocyte nuclei per 106cells exhibited DNA strand breaks in the portion adjacent to the infarcted tissue at 3–12 h. This parameter increased to 704 at 1–2 days and subsequently decreased to 364 at 7 days, 188 at 14 days, and 204 at 1 month. In the remote myocardium, the number of myocyte nuclei with DNA strand breaks was 84 per 106at 3–12 h and remained essentially constant up to 1 month. Programmed myocyte cell death was accompanied by a decrease in the expression of bcl-2 and an increase in the expression of bax. The changes in the expression of these genes were present at 1 and 7 days after coronary artery occlusion. In conclusion, the mechanical load produced by myocardial infarction and ventricular failure may affect the regulation of bcl-2 and bax in the viable myocytes, triggering programmed cell death and the remodeling of the ventricular wall.  相似文献   

2.
3.
Background: Apoptosis plays a key role in the pathogenesis of cardiac diseases. We examined the influence of the renin-angiotensin system (RAS) on different regulators of apoptosis using an isolated hemoperfused working porcine heart model of acute ischemia (2 h), followed by reperfusion (4 h). Methods and Results: 23 porcine hearts were randomized to 5 groups: hemoperfused non-infarcted hearts (C), infarcted hearts (MI: R. circumflexus), infarcted hearts treated with quinaprilat (Q), infarcted hearts treated with angiotensin-I (Ang I), and infarcted hearts treated with angiotensin-I and quinaprilat (QA). Fas, Bax, bcl-2 and p53 proteins were increased in MI hearts and further elevated by Ang I. Quinaprilat reduced Bax and p53. Bcl-2 was elevated in Q and reduced in QA. An early upregulation of caspase-3 gene and protein expression was detected in MI and Ang I hearts compared to C. Q reduced caspase-3 gene expression, but had no effect on caspase-3 and Fas protein. Conclusions: These data suggest that the RAS plays a pivotal role in cardiac apoptosis which is the early and predominant form of death in myocardial infarction. Ischemia/reperfusion induces programmed cell death via extrinsic and intrinsic pathways. Early treatment with quinaprilat attenuated cardiomyocyte apoptosis. P. Kossmehl and E. Kurth contributed equally.  相似文献   

4.
Despite early reperfusion, patients with ST segment elevation myocardial infarction (STEMI) may present large myocardial necrosis and significant impairment of ventricular function. The present study aimed to evaluate the role of subtypes of B lymphocytes and related cytokines in the infarcted mass and left ventricular ejection fraction obtained by cardiac magnetic resonance imaging performed after 30 days of STEMI. This prospective study included 120 subjects with STEMI submitted to pharmacoinvasive strategy. Blood samples were collected in subjects in the first (D1) and 30th (D30) days post STEMI. The amount of CD11b+ B1 lymphocytes (cells/ml) at D1 were related to the infarcted mass (rho = 0.43; P=0.033), measured by cardiac MRI at D30. These B1 cells were associated with CD4+ T lymphocytes at D1 and D30, while B2 classic lymphocytes at day 30 were related to left ventricular ejection fraction (LVEF). Higher titers of circulating IL-4 and IL-10 were observed at D30 versus D1 (P=0.013 and P<0.001, respectively). Titers of IL-6 at D1 were associated with infarcted mass (rho = 0.41, P<0.001) and inversely related to LVEF (rho = −0.38, P<0.001). After multiple linear regression analysis, high-sensitivity troponin T and IL-6 collected at day 1 were independent predictors of infarcted mass and, at day 30, only HDL-C. Regarding LVEF, high-sensitivity troponin T and high-sensitivity C-reactive protein were independent predictors at day 1, and B2 classic lymphocytes, at day 30. In subjects with STEMI, despite early reperfusion, the amount of infarcted mass and ventricular performance were related to inflammatory responses triggered by circulating B lymphocytes.  相似文献   

5.
Granulocyte colony-stimulating factor (G-CSF) was reported to induce myocardial regeneration by promoting mobilization of bone marrow stem cells to the injured heart after myocardial infarction, but the precise mechanisms of the beneficial effects of G-CSF are not fully understood. Here we show that G-CSF acts directly on cardiomyocytes and promotes their survival after myocardial infarction. G-CSF receptor was expressed on cardiomyocytes and G-CSF activated the Jak/Stat pathway in cardiomyocytes. The G-CSF treatment did not affect initial infarct size at 3 d but improved cardiac function as early as 1 week after myocardial infarction. Moreover, the beneficial effects of G-CSF on cardiac function were reduced by delayed start of the treatment. G-CSF induced antiapoptotic proteins and inhibited apoptotic death of cardiomyocytes in the infarcted hearts. G-CSF also reduced apoptosis of endothelial cells and increased vascularization in the infarcted hearts, further protecting against ischemic injury. All these effects of G-CSF on infarcted hearts were abolished by overexpression of a dominant-negative mutant Stat3 protein in cardiomyocytes. These results suggest that G-CSF promotes survival of cardiac myocytes and prevents left ventricular remodeling after myocardial infarction through the functional communication between cardiomyocytes and noncardiomyocytes.  相似文献   

6.
Objective Chronic adenosine A2b receptor stimulation has been shown to prevent ventricular remodelling after myocardial infarction (MI). We hypothesized that this effect is due to the inhibition of cardiac myocyte apoptosis in the myocardium remote from the infarction. Methods Rats were subjected to MI by LAD ligation in situ. Some animals were pre-treated with the stable adenosine analogue 2-chloro-adenosine (CADO). After 24 h, pro- and anti-apoptotic signals (protein kinase C isoforms, p38, g proteins, Bcl-2/Bax ratio, Akt, Bad), and marker of apoptosis execution (caspase-3, TUNEL) were quantified in the remote myocardium. Results CADO prevented the occurrence of apoptosis in the remote myocardium of an infarcted heart. This effect occured not only when CADO was started before the onset of ischemia but also when it started 3 h after the infarction. The anti-apoptotic effect of CADO was blocked by simultaneous administration of the selective adenosine A2b receptor antagonist MRS1754 (1 mg/kg). The anti-apoptotic effect of CADO seems to be mediated by gαq and by the activation of survival kinases (Bad) and by inhibition of the pro-apoptotic PKC-δ/p38-MAPK-pathway. Conclusion Chronic adenosine A2b receptor stimulation blocks cardiac myocyte apoptosis in the remote myocardium even when started after the onset of infarction. This may explain the anti-remodelling-effect of the A2b receptor stimulation after infarction.  相似文献   

7.
We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1-6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0. 001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.  相似文献   

8.
We used human angiopoietin-1 (hAng1)-modified mesenchymal stem cells (MSCs) to treat acute myocardial infarction (AMI) in rats. The hAng1 gene was transfected into cultured rat MSCs using an adenoviral vector. Five million hAng-transfected MSCs (MSC(Ang1)) or green fluorescent protein transfected MSCs (MSC(GFP)) or PBS only (PBS group) were injected intramyocardially into the inbred Lewis rat hearts immediately after myocardial infarction. MSC(Ang1) survived in the infarcted myocardium, and expressed hAng1 at both mRNA and protein levels. The vascular density was higher in the MSC(Ang1) and MSC(GFP) groups than in the PBS group. The measurements of infarcted ventricular wall thickness, infarction area, and left ventricular diameter indicated that heart remodeling was inhibited and heart function was improved in both the MSC(Ang1) and MSC(GFP) groups. However, in contrast to the MSC(GFP) group, the MSC(Ang1) group showed enhanced angiogenesis and arteriogenesis (by 11-35%), infarction area was reduced by 30% and the left ventricular wall was 46% thicker (P<0.05). The results indicated that hAng1-modified MSCs improved heart function, followed by angiogenic effects in salvaging ischemic myocardium and reduced cardiac remodeling.  相似文献   

9.
Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias.  相似文献   

10.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

11.
Previous studies have shown the beneficial effects of the hepatocyte growth factor (HGF) gene on myocardial perfusion and infarction size but not on the regional strain in relationship to global left ventricular function. A noninvasive magnetic resonance (MR) study was performed to determine the effect of a new HGF gene, VM202, expressing two isoforms of HGF, on regional and global left ventricular function. Pigs (8/group) were divided into three groups: 1) controls without infarction; 2) reperfused, infarcted controls; and 3) infarcted, treated (1 h after reperfusion) with VM202 injected at eight sites. Cine, tagging, and delayed enhancement MR images were acquired at 3 and 50 +/- 3 days after infarction. At 50 days, ejection fraction in infarcted, treated animals increased (38 +/- 1% to 47 +/- 2%, P < 0.01) to the level of controls without infarction (52 +/- 1%, P = 0.16) but decreased in infarcted controls (41 +/- 1% to 37 +/- 1%, P < 0.05). Two-dimensional strain improved in remote, peri-infarcted, and infarcted myocardium. Furthermore, the infarction size was smaller in infarcted, treated animals (7.0 +/- 0.5%) compared with infarcted controls (13.2 +/- 1.6%, P < 0.05). Histopathology showed a lack of hypertrophy in myocytes in peri-infarcted and remote myocardium and the formation of islands/peninsulas of myocytes in infarcted, treated animals but not in infarcted controls. In conclusion, the plasmid HGF gene caused a near complete recovery of ejection fraction and improved the radial and circumferential strain of remote, peri-infarcted, and infarcted regions within 50 days. These beneficial effects may be explained by the combined effects of a speedy and significant infarct resorption and island/peninsulas of hypertrophied myocytes within the infarcted territory but not by compensatory hypertrophy. The combined use of cine and tagging MR imaging provides valuable information on the efficacy of gene therapy.  相似文献   

12.
We suggested that low‐level laser irradiation (LLLI) precondition prior to cell transplantation might remodel the hostile milieu of infarcted myocardium and subsequently enhance early survival and therapeutic potential of implanted bone marrow mesenchymal stem cells (BMSCs). Therefore, in this study we wanted to address: (1) whether LLLI pre‐treatment change the local cardiac micro‐environment after myocardial infarction (MI) and (2) whether the LLLI preconditions enhance early cell survival and thus improve therapeutic angiogenesis and heart function. MI was induced by left anterior descending artery ligation in female rats. A 635 nm, 5 mW diode laser was performed with energy density of 0.96 J/cm2 for 150 sec. for the purpose of myocardial precondition. Three weeks later, qualified rats were randomly received with LLLI precondition (n= 26) or without LLLI precondition (n= 27) for LLLI precondition study. Rats that received thoracotomy without coronary ligation were served as sham group (n= 24). In the cell survival study, rats were randomly divided into 4 groups: serum‐free culture media injection (n= 8), LLLI precondition and culture media injection (n= 8), 2 million male BMSCs transplantation without LLLI pre‐treatment (n= 26) and 2 million male BMSCs transplantation with LLLI precondition (n= 25) group, respectively. Vascular endothelial growth factor (VEGF), glucose‐regulated protein 78 (GRP78), superoxide dismutase (SOD) and malondialdehyde (MDA) in the infarcted myocardium were evaluated by Western blotting, real‐time PCR and colorimetry, respectively, at 1 hr, 1 day and 1 week after laser irradiation. Cell survival was assayed with quantitative real‐time PCR to identify Y chromosome gene and apoptosis was assayed with transferase‐mediated dUTP end labelling staining. Capillary density, myogenic differentiation and left ventricular function were tested by immunohistochemistry and echocardiography, respectively, at 1 week. After LLLI precondition, increased VEGF and GRP78 expression, as well as the enhanced SOD activity and inhibited MDA production, was observed. Compared with BMSC transplantation and culture media injection group, although there was no difference in the improved heart function and myogenic differentiation, LLLI precondition significantly enhanced early cell survival rate by 2‐fold, decreased the apoptotic percentage of implanted BMSCs in infarcted myocardium and thus increased the number of newly formed capillaries. Taken together, LLLI precondition could be a novel non‐invasive approach for intraoperative cell transplantation to enhance cell early survival and therapeutic potential.  相似文献   

13.
Objective Apoptotic processes may be implicated in the molecular pathomechanisms of ventricular remodeling after myocardial infarction (MI). The modulation of apoptosis by pro- and anti-apoptotic pathways in the myocardium remote from the infarction, including its link to protein kinase C (PKC), was focus of the present study. Methods Rats were subjected to MI by LAD ligation in situ. Some animals were pretreated with the PKC inhibitor chelerythrine. After 1 h up to 28 days, pro- and anti-apoptotic signals (caspase-3, Bcl-2/Bax ratio, Akt, Bad), and marker of apoptosis execution (DNA laddering, TUNEL) were quantified in the myocardium remote from the infarction. Results Activation of caspase-3, a pro-apoptotic shift of the Bcl-2/Bax ratio, and DNA fragmentation were observed as early as 3 h after infarction and persisted up to 28 days. Akt- and Bad-phosphorylation was unchanged. Chelerythrine markedly reduced DNA fragmentation. Caspase-3 activation was unchanged. Surprisingly, Bad and Akt phosphorylation were highly increased (180% and 750% of control). Conclusion Chelerythrine influences the balance of pro- and anti-apoptotic pathways in the remote myocardium after infarction, with an inhibition of proapoptotic and an activation of anti-apoptotic signals.  相似文献   

14.
Although amlodipine, a long-acting L-type calcium channel blocker, reportedly prevents left ventricular remodeling and dysfunction after myocardial infarction, the mechanism responsible is not yet well understood. Myocardial infarction was induced in mice by ligating the left coronary artery. Treatment of mice with amlodipine (10 mg x kg(-1) x day(-1)), beginning on the third day postinfarction, significantly improved survival and attenuated left ventricular dilatation and dysfunction 4 wk postinfarction compared with treatment with saline or hydralazine. Although infarct sizes did not differ among the groups, the infarcted wall thickness was greater and the infarct segment length was smaller in the amlodipine-treated group, and cellular components, including vessels and myofibroblasts, were abundant within the infarcted area. Ten days postinfarction (the subacute stage), the proliferation of granulation tissue cells in the infarcted area was similar among the groups, but the incidence of apoptosis was significantly lower in the amlodipine-treated group, where Bad, a proapoptotic Bcl-2 family protein, was significantly phosphorylated (inactivated). Calcineurin, which dephosphorylates (activates) Bad, was upregulated in infarcted hearts, but its levels were significantly reduced by amlodipine treatment. In vitro, Fas stimulation augmented calcineurin activity and induced apoptosis among infarct tissue-derived myofibroblasts; both of those effects were strongly inhibited by amlodipine, two other calcium channel blockers (verapamil or nifedipine), and two calcineurin inhibitors (cyclosporin A or FK-506). Amlodipine inhibits Fas-mediated granulation tissue cell apoptosis in infarcted hearts, possibly by attenuating the activities of calcineurin and Bad. These findings may provide new insight into the mechanism by which calcium channel blockers attenuate postinfarction cardiac remodeling and dysfunction.  相似文献   

15.
We report the appearance of apoptotic cells in experimental myocardial infarction (rabbit heart) in in situ and in vitro preparations. Apoptosis was recognized by intravital staining with Hoechst 33342 (Ho342), by nick-end labeling (TUNEL) and by DNA laddering. A steady rise in the relative number of apoptotic cardiomyocytes (apoptotic index) was noted in in situ preparations. Apoptosis was first noted 6 h after the onset of ischemia with its highest value occurring after 72 h. Apoptotic nuclei were absent in remote areas of the left and right ventricles. Apoptotic nuclei within the infarcted area showed diminished intensity of Ho342 fluorescence. Three days after ischemia, a border zone adjacent to the infarcted area consisting of apoptotic macrophages was recognized. A novel finding was the appearance of apoptotic cardiomyocytes in the isolated perfused ischemic heart. Occurring as early as 50 min after the onset of ischemia, a high apoptotic index was present adjacent to the ligature placed around the coronary artery. This observation provides the opportunity to selectively examine factors leading to apoptosis in the ischemic heart under controlled experimental conditions.  相似文献   

16.
Stromal cell-derived factor 1α (SDF-1) is not only a major chemotactic factor, but also an inducer of angiogenesis. The effects of SDF-1α on the left ventricular remodeling in a rat myocardial infarction (MI) model were analyzed. Myocardial infarction was induced by ligation of the left coronary artery in rats. 0.5 × 1010 pfu/ml AdV-SDF-1 or 0.5 × 1010 pfu/ml Adv-LacZ were immediately injected into the infarcted myocardium, 120 μl cell-free PBS were injected into the infarcted region or the myocardial wall in control, and sham group, respectively. We found that AdV-SDF-1 group had higher LVSP and ±dP/dtmax, lower LVEDP compared to control or Adv-LacZ group. The number of c-Kit+ stem cells, and gene expression of SDF-1, VEGF and bFGF were obviously increased, which was associated with reduced infarct size, thicker left ventricle wall, greater vascular density and cardiocytes density in infarcted hearts of AdV-SDF-1 group. Furthermore, the expression of collagen type I and type III mRNA, and collagen accumulation in the infarcted area was lower, which was associated with decreased TGF-β1, TIMP-1 and TIMP-2 expression in AdV-SDF-1 group. Conclusion: SDF-1α could improve cardiac structure and function after Myocardial infarction through angiogenic and anti-fibrotic actions.  相似文献   

17.
After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re‐establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full‐length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9‐week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell‐based gene therapy provides a new approach to cardiac regeneration.  相似文献   

18.
ObjectivesTo investigate the expression of FLK1, CD146 and microvessel density of angiogenesis at the first week of reperfused acute myocardial infarction (AMI).Methods16 of mini-swines (20 to 30 Kg) were randomly assigned to the sham-operated group and the AMI group. Pathologic myocardial tissue was collected at day 7 following reperfusion and detected by dual immunochemistry, real-time quantitative polymerase chain reaction and western blot.ResultsThe infarcted area had higher FLK1 mRNA expression than the sham-operated area and the normal area (all P < 0.05), and the infarcted and marginal areas showed higher CD146 protein expression than the sham-operated area (all P < 0.05), but the microvessel density (CD31 positive expression of microvessels/HP) was not significantly different between the infarcted area and the sham-operated area (8.92 ± 3.05 vs 6.43 ± 1.54)(P > 0.05).ConclusionFLK1 and CD146 expression significantly increase in the infarcted and marginal areas, and the microvessel density of angiogenesis in the infarcted area is similar to normal microvessel density of healthy heart tissue, suggesting that FLK1 and CD146 are possible associated with angiogenesis at day 7 following reperfused acute myocardial infarction.  相似文献   

19.
目的:分析急性心肌梗死(AMI)后大鼠心肌组织Rho激酶表达的变化及心肌细胞凋亡情况,观察法舒地尔对急性心肌梗死(AMI)后大鼠心肌组织Rho激酶表达的影响,探讨法舒地尔对心梗后心肌的保护作用。方法:选取雄性Wistar大鼠,随机分为三组:治疗组、AMI组、假手术组。治疗组及AMI组均结扎左前降支(LAD)制作AMI模型;假手术组只在其LAD下穿线不结扎。治疗组给予法舒地尔5mg/kg,腹腔注射,每日两次;对照组和假手术组给予等量生理盐水。1周后,EvensBlue及NBT双染色确定缺血面积及梗死面积,RT-PCR法测定rho激酶mRNA的表达,DNA断裂的原位末端标记法(T UNEL法)检测缺血区心肌细胞凋亡指数(AI),免疫组化测定凋亡相关蛋白bcl-2及bax表达的变化。结果:1周后,AMI组与假手术组相比,AMI组大鼠Rho激酶mRNA表达增加(P0.01),凋亡相关蛋白bax表达增加(P0.01),bcl-2表达减少(P0.01),AI明显增加(P0.01)。治疗组与AMI组相比,梗死面积显著减小(P0.05),Rho激酶mRNA及bax表达显著减少,AI显著降低,bcl-2表达显著增加(均P0.01)。结论:大鼠AMI后,心肌组织中Rho激酶的表达增加,心肌细胞凋亡指数增加,连续应用法舒地尔1周能有效减少心肌细胞凋亡指数,起到心肌保护的作用。  相似文献   

20.
Left ventricular (LV) remodeling and heart failure (HF) complicate acute myocardial infarction (AMI) even weeks to months after the initial insult. Apoptosis may represent an important pathophysiologic mechanism causing progressive myocardiocyte loss and LV dilatation even late after AMI. This review will discuss the role of apoptosis according to findings in animal experimental data and observational studies in humans in order to assess clinical relevance, determinants, and mechanisms of myocardial apoptosis and potential therapeutic implications. More complete definition of the impact of myocardiocyte loss on prognosis and of the mechanisms involved may lead to improved understanding of cardiac remodeling and possibly improved patients' care. Mitochondrial damage and bcl-2 to bax balance play a central role in ischemia-dependent apoptosis while angiotensin II and beta(1)-adrenergic-stimulation may be major causes of receptor-mediated apoptosis. Benefits due to treatment with ACE-inhibitors and beta-blockers appear to be in part due to reduced myocardial apoptosis. Moreover, infarct-related artery patency late after AMI may be a major determinant of myocardial apoptosis and clinical benefits deriving from an open artery late post AMI (the "open artery hypothesis") may be, at least in part, due to reduced myocardiocyte loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号