首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and intrinsic activities of conserved STAS domains of the ubiquitous SulP/SLC26 anion transporter superfamily have until recently remained unknown. Here we report the heteronuclear, multidimensional NMR spectroscopy solution structure of the STAS domain from the SulP/SLC26 putative anion transporter Rv1739c of Mycobacterium tuberculosis. The 0.87-Å root mean square deviation structure revealed a four-stranded β-sheet with five interspersed α-helices, resembling the anti-σ factor antagonist fold. Rv1739c STAS was shown to be a guanine nucleotide-binding protein, as revealed by nucleotide-dependent quench of intrinsic STAS fluorescence and photoaffinity labeling. NMR chemical shift perturbation analysis partnered with in silico docking calculations identified solvent-exposed STAS residues involved in nucleotide binding. Rv1739c STAS was not an in vitro substrate of mycobacterial kinases or anti-σ factors. These results demonstrate that Rv1739c STAS binds guanine nucleotides at physiological concentrations and undergoes a ligand-induced conformational change but, unlike anti-σ factor antagonists, may not mediate signals via phosphorylation.  相似文献   

2.
3.
Sustained adaptive immunity to pathogens provides effective protection against infections, and effector cells located at the site of infection ensure rapid response to the challenge. Both are essential for the success of vaccine development. To explore new vaccination approach against Mycobacterium tuberculosis (M.tb) infection, we have shown that Rv3615c, identified as ESX‐1 substrate protein C of M.tb but not expressed in BCG, induced a dominant Th1‐type response of CD4+ T cells from patients with tuberculosis pleurisy, which suggests a potential candidate for vaccine development. But subcutaneous immunization with Rv3615c induced modest T‐cell responses systemically, and showed suboptimal protection against virulent M.tb challenge at the site of infection. Here, we use a mouse model to demonstrate that intranasal immunization with Rv3615c induces sustained capability of adaptive CD4+ T‐ and B‐cell responses in lung parenchyma and airway. Rv3615c contains a dominant epitope of mouse CD4+ T cells, Rv3615c41‐50, and elicits CD4+ T‐cell response with an effector–memory phenotype and multi‐Th1‐type cytokine coexpressions. Since T cells resident at mucosal tissue are potent at control of infection at early stage, our data show that intranasal immunization with Rv3615c promotes a sustained regional immunity to M.tb, and suggests a potency in control of M.tb infection. Our study warranties a further investigation of Rv3615c as a candidate for development of effective vaccination against M.tb infection.  相似文献   

4.
5.
Sharma AK  Ye L  Alper SL  Rigby AC 《The FEBS journal》2012,279(3):420-436
Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (μs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.  相似文献   

6.
Growth and virulence of mycobacteria requires sulfur uptake. The Mycobacterium tuberculosis genome contains, in addition to the ABC sulfate permease cysTWA, three SLC26-related SulP genes of unknown function. We report that induction of Rv1739c expression in E. coli increased bacterial uptake of sulfate, but not Cl(-), formate, or oxalate. Uptake was time-dependent, maximal at pH 6.0, and exhibited a K(1/2) for sulfate of 4.0 muM. Na(+)-independent sulfate uptake was not reduced by bicarbonate, nitrate, or phosphate, but was inhibited by sulfite, selenate, thiosulfate, N-ethylmaleimide and carbonyl cyanide 3-chloro-phenylhydrazone. Sulfate uptake was also increased by overexpression of the Rv1739c transmembrane domain, but not of the cytoplasmic C-terminal STAS domain. Mutation to serine of the three cysteine residues of Rv1739c did not affect magnitude, pH-dependence, or pharmacology of sulfate uptake. Expression of Rv1739c in a M. bovis BCG strain lacking the ABC sulfate permease subunit CysA could not complement sulfate auxotrophy. Moreover, inducible expression of Rv1739c in an E. coli strain lacking CysA did not increase sulfate uptake by intact cells. Our data show that facilitation of bacterial sulfate uptake by Rv1739c requires CysA and its associated sulfate permease activity, and suggest that Rv1739c may be a CysTWA-dependent sulfate transporter.  相似文献   

7.
The first structure for a member of the DUF3349 (PF11829) family of proteins, Rv0543c from Mycobacterium tuberculosis, has been determined using NMR-based methods and some of its biophysical properties characterized. Rv0543c is a 100 residue, 11.3 kDa protein that both size exclusion chromatography and NMR spectroscopy show to be a monomer in solution. The structure of the protein consists of a bundle of five α-helices, α1 (M1 – Y16), α2 (P21 – C33), α3 (S37 – G52), α4 (G58 – H65) and α5 (S72 – G87), held together by a largely conserved group of hydrophobic amino acid side chains. Heteronuclear steady-state {1H}–15N NOE, T1, and T2 values are similar through-out the sequence indicating that the backbones of the five helices are in a single motional regime. The thermal stability of Rv0543c, characterized by circular dichroism spectroscopy, indicates that Rv0543c irreversibly unfolds upon heating with an estimated melting temperature of 62.5 °C. While the biological function of Rv0543c is still unknown, the presence of DUF3349 proteins predominately in Mycobacterium and Rhodococcus bacterial species suggests that Rv0543 may have a biological function unique to these bacteria, and consequently, may prove to be an attractive drug target to combat tuberculosis.  相似文献   

8.
Growth and virulence of mycobacteria requires sulfur uptake. The Mycobacterium tuberculosis genome contains, in addition to the ABC sulfate permease cysTWA, three SLC26-related SulP genes of unknown function. We report that induction of Rv1739c expression in E. coli increased bacterial uptake of sulfate, but not Cl(-), formate, or oxalate. Uptake was time-dependent, maximal at pH 6.0, and exhibited a K(1/2) for sulfate of 4.0 muM. Na(+)-independent sulfate uptake was not reduced by bicarbonate, nitrate, or phosphate, but was inhibited by sulfite, selenate, thiosulfate, N-ethylmaleimide and carbonyl cyanide 3-chloro-phenylhydrazone. Sulfate uptake was also increased by overexpression of the Rv1739c transmembrane domain, but not of the cytoplasmic C-terminal STAS domain. Mutation to serine of the three cysteine residues of Rv1739c did not affect magnitude, pH-dependence, or pharmacology of sulfate uptake. Expression of Rv1739c in a M. bovis BCG strain lacking the ABC sulfate permease subunit CysA could not complement sulfate auxotrophy. Moreover, inducible expression of Rv1739c in an E. coli strain lacking CysA did not increase sulfate uptake by intact cells. Our data show that facilitation of bacterial sulfate uptake by Rv1739c requires CysA and its associated sulfate permease activity, and suggest that Rv1739c may be a CysTWA-dependent sulfate transporter.  相似文献   

9.
10.
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.  相似文献   

11.
A single plasmid that allows controlled coexpression has been developed for use in mycobacteria. The tetracycline inducible promoter, PtetO, was used to provide tetracycline‐dependent induction of one gene, while the Psmyc, Pimyc, or Phsp promoters were used to provide three different levels of constitutive expression of a second gene. The functions of these four individual promoters were established using green fluorescent protein (GFP) and a newly identified red fluorescence inducible protein from Geobacillus sterothermophilus strain G1.13 (RFIP) as reporters. The tandem use of GFP and RFIP as reporter genes allowed optimization of the tunable coexpression in Mycobacterium smegmatis; either time at a fixed inducer concentration or changes in inducer concentration could be used to control the protein:protein ratio. This single vector system was used to coexpress the two‐protein Mycobacterium tuberculosis stearoyl‐CoA Δ9 desaturase complex (integral membrane desaturase Rv3229c and NADPH oxidoreductase Rv3230c) in M. smegmatis. The catalytic activity was found to increase in a manner corresponding to increasing the level of Rv3230c relative to a fixed level of Rv3229c. This system, which can yield finely tuned coexpression of the fatty acid desaturase complex in mycobacteria, may be useful for study of other multicomponent complexes. Furthermore, the tunable coexpression strategy used herein should also be applicable in other species with minor modifications.  相似文献   

12.
Mycobacterium tuberculosis virulence is highly metal‐dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for k cat rather than K M. Removal of the artificial N‐terminal 6xHis‐tag did not change the metal‐dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal‐dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.  相似文献   

13.
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis‐1 and DLP‐1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down‐regulating the expression of pexophagy associated proteins (p‐AMPKα, p‐ULK‐1, Atg5, Atg7, Beclin‐1, LC3‐II, TFEB and Keap‐1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor‐γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.  相似文献   

14.
Recently the ATP-binding cassette (ABC) efflux pumps have been proved to be a major component of drug resistance in Mycobacterium tuberculosis. The objective of this study was to investigate the expression profiles of Rv1456c-Rv1457c-Rv1458c efflux system in clinical isolates of M. tuberculosis and its involvement in drug-resistance mechanisms. Significantly increased mRNA expression of Rv1456c, Rv1457c, and Rv1458c appeared among the clinical isolates (P < 0.05), which are resistant to at least one of the four first-line drugs including rifampin, isoniazid, streptomycin, and ethambutol. In addition, overexpression of this efflux system was more frequently found in multidrug-resistant and extensively drug-resistant M. tuberculosis strains. Therefore, Rv1456c-Rv1457c-Rv1458c efflux pumps may play an important role in drug resistance of treatment of M. tuberculosis. Further investigation of this gene may lead to the development of countermeasures against M. tuberculosis drug resistance.  相似文献   

15.
16.
Rv2613c is a diadenosine 5′,5?-P1,P4-tetraphosphate (Ap4A) phosphorylase from Mycobacterium tuberculosis H37Rv. Sequence analysis suggests that Rv2613c belongs to the histidine triad (HIT) motif superfamily, which includes HIT family diadenosine polyphosphate (ApnA) hydrolases and Ap4A phosphorylases. However, the amino acid sequence of Rv2613c is more similar to that of HIT family ApnA hydrolases than to that of typical Ap4A phosphorylases. Here, we report the crystal structure of Rv2613c, which is the first structure of a protein with ApnA phosphorylase activity, and characterized the structural basis of its catalytic activity. Our results showed that the structure of Rv2613c is similar to those of other HIT superfamily proteins. However, Asn139, Gly146, and Ser147 in the active site of Rv2613c replace the corresponding Gln, Gln, and Thr residues that are normally found in HIT family ApnA hydrolases. Furthermore, analyses of Rv2613c mutants revealed that Asn139, Gly146, and Ser147 are important active-site residues and that Asn139 has a critical role in catalysis. The position of Gly146 might influence the phosphorylase activity. In addition, the tetrameric structure of Rv2613c and the presence of Trp160 might be essential for the formation of the Ap4A binding site. These structural insights into Rv2613c may facilitate the development of novel structure-based inhibitors for treating tuberculosis.  相似文献   

17.
Mycobactin acylation plays a crucial role in the ability of Mycobacterium tuberculosis to acquire intracellular iron during infection. M. tuberculosis Rv1347c, the lysine Nε-acyltransferase responsible for mycobactin acylation, represents a valid target for the development of novel anti-tubercular agents. Here we investigate the substrate specificity of Rv1347c, evaluate its kinetic mechanism and probe the contributions of active-site residues to catalysis. Our results confirm that Rv1347c demonstrates a preference for longer acyl-chains and suggest that mycobactin acylation occurs subsequent to mycobactin core assembly. Steady-state bisubstrate kinetics and dead-end inhibitor studies support a random sequential kinetic mechanism. Analysis of the pH dependence of kcat/Km revealed the presence of two groups that must be deprotonated for efficient catalysis. Mutagenesis of His130 and Asp168 indicated that both residues are critical for acyltransferase activity and suggests that His130 is responsible for general base activation of the ε-amino group of lysine.  相似文献   

18.
Recent studies have demonstrated that the O‐antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N‐formylated sugars (3‐formamido‐3,6‐dideoxy‐d ‐glucose or 4‐formamido‐4,6‐dideoxy‐d ‐glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6‐dehydratase, a pyridoxal 5'‐phosphate or PLP‐dependent aminotransferase, and an N‐formyltransferase. To date, there have been no published reports of N‐formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N‐formyltransferase. Given that M. tuberculosis produces l ‐rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6‐dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N‐formylated sugar in M. tuberculosis, namely a PLP‐dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP‐4‐formamido‐4,6‐dideoxy‐d ‐glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.  相似文献   

19.
Identification of CD8+ T cell antigens/epitopes expressed by human pathogens with large genomes is especially challenging, yet necessary for vaccine development. Immunity to tuberculosis, a leading cause of mortality worldwide, requires CD8+ T cell immunity, yet the repertoire of CD8 antigens/epitopes remains undefined. We used integrated computational and proteomic approaches to screen 10% of the Mycobacterium tuberculosis (Mtb) proteome for CD8 Mtb antigens. We designed a weighting schema based upon a Multiple Attribute Decision Making:framework to select 10% of the Mtb proteome with a high probability of containing CD8+ T cell epitopes. We created a synthetic peptide library consisting of 15-mers overlapping by 11 aa. Using the interferon-γ ELISPOT assay and Mtb-infected dendritic cells as antigen presenting cells, we screened Mtb-specific CD8+ T cell clones restricted by classical MHC class I molecules (MHC class Ia molecules), that were isolated from Mtb-infected humans, against this library. Three novel CD8 antigens were unambiguously identified: the EsxJ family (Rv1038c, Rv1197, Rv3620c, Rv2347c, Rv1792), PE9 (Rv1088), and PE_PGRS42 (Rv2487c). The epitopes are B5701-restricted EsxJ24–34, B3905-restricted PE953–67, and B3514-restricted PE_PGRS4248–56, respectively. The utility of peptide libraries in identifying unknown epitopes recognized by classically restricted CD8+ T cells was confirmed, which can be applied to other intracellular pathogens with large size genomes. In addition, we identified three novel Mtb epitopes/antigens that may be evaluated for inclusion in vaccines and/or diagnostics for tuberculosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号