首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Classical (conventional) Müllerian mimicry theory predicts that two (or more) defended prey sharing the same signal always benefit each other despite the fact that one species can be more toxic than the other. The quasi‐Batesian (unconventional) mimicry theory, instead, predicts that the less defended partner of the mimetic relationship may act as a parasite of the signal, causing a fitness loss to the model. Here we clarify the conditions for parasitic or mutualistic relationships between aposematic prey, and build a model to examine the hypothesis that the availability of alternative prey is crucial to Müllerian and quasi‐Batesian mimicry. Our model is based on optimal behaviour of the predator. We ask if and when it is in the interest of the predator to learn to avoid certain species as prey when there is alternative (cryptic) prey available. Our model clearly shows that the role of alternative prey must be taken into consideration when studying model–mimic dynamics. When food is scarce it pays for the predator to test the models and mimics, whereas if food is abundant predators should leave the mimics and models untouched even if the mimics are quite edible. Dynamics of the mimicry tend to be classically Müllerian if mimics are well defended, while quasi‐Batesian dynamics are more likely when they are relatively edible. However, there is significant overlap: in extreme cases mimics can be harmful to models (a quasi‐Batesian case) even if the species are equally toxic. A crucial parameter explaining this overlap is the search efficiency with which indiscriminating vs. discriminating predators find cryptic prey. Quasi‐Batesian mimicry becomes much more likely if discrimination increases the efficiency with which the specialized predator finds cryptic prey, while the opposite case tends to predict Müllerian mimicry. Our model shows that both mutualistic and parasitic relationship between model and mimic are possible and the availability of alternative prey can easily alter this relationship.  相似文献   

2.
Prey species gain protection by imitating signals of unpalatable models in defensive mimicry. Mimics have been traditionally classified as Batesian (palatable mimic resembling an unpalatable model) or Müllerian (unpalatable mimic resembling a similarly unpalatable model). However, recent studies suggest that rather than discrete categories, the phenomenon of mimicry can be better understood as a continuum. The level of unpalatability of defended prey is a key factor in determining the type of mimetic relationship. Herein, we used insects (ladybugs and true bugs) from a putative European “red–black” mimetic complex as experimental models of defended species and crickets as a control prey. We offered the prey to two species of sympatric invertebrate predators (praying mantis and spider) and video recorded the interactions. We tested three alternative hypotheses, namely (i) the three red–black species tested are similarly defended against both predators; (ii) some red–black species are better defended than others against both predator species, and (iii) the effectiveness of the red–black species defenses is predator dependent. Both predators attacked all prey types with a similar frequency. But while all three red–black species similarly elicited aversive behaviors in spiders, the mantises' aversive reactions varied depending on the prey species. Our results provide support to the third hypothesis, suggesting that the same prey species can fall into different parts of the spectrum of palatability–unpalatability depending on the type of predator.  相似文献   

3.
During the past thirty years, natural selection due to predation has been investigated with regard to prey motion in three areas that are relevant to the evolution of mimicry: (1) anti-apostatic selection, (2) locomotor mimicry, and (3) escape mimicry. Anti-apostatic selection, or selection against the odd individuals, arises when prey are at very high densities or when prey are Müllerian mimics. When prey are at high densities, motion of the prey increases selection against odd individuals. When the prey are Müllerian mimics, motion may also play an important role in strengthening selection against odd individuals. This may explain locomotor mimicry between Müllerian mimics. Locomotor mimicry arises when two distantly-related prey species appear alike in behaviour, and there is a corresponding suite of morphological, physiological, and biomechanical traits that the prey have in common. Locomotor mimicry has been demonstrated in Müllerian mimics. It is also predicted to occur in Batesian mimics but with important limitations due to selection by the predator for the prey to maintain the ability to escape if detected. Locomotor mimicry may also occur between palatable species that are alike as a result of unprofitable prey (or escape) mimicry. Escape mimicry arises when prey are difficult to capture. By frustration learning, the predator associates the colour of the prey with unprofitability. In all three instances, dis-similarity in colour or motion probably increases selection against the odd individual. In addition, the interaction of colour and motion gives rise to greater reliability of the signals to a specialist predator. However for a generalist predator, multiple component signals of the prey lead to errors in signal perception and greater risk of cheating. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Inexperienced predators are assumed to select for similarity of warning signals in aposematic species (Müllerian mimicry) when learning to avoid them. Recent theoretical work predicts that if co-mimic species have unequal defences, predators attack them according to their average unpalatability and mimicry may not be beneficial for the better defended co-mimic. In this study, we tested in a laboratory environment whether a uniform warning signal is superior to a variable one in promoting predator learning, and simultaneously whether co-mimics are preyed upon according to their average unpalatability. There was an interaction of signal variation and unpalatability but inexperienced birds did not select for signal similarity in artificial prey; when the prey was moderately defended a variable signal was even learnt faster than a uniform one. Due to slow avoidance learning, moderately defended prey had higher mortality than highly defended prey (although this was not straightforward), but mixing high and moderate unpalatability did not increase predation compared with high unpalatability. This does not support the view that predators are sensitive to varying unpalatability. The results suggest that inexperienced predators may neither strongly select for accurate Müllerian mimicry nor affect the benefits of mimicry when the co-mimics are unequally defended.  相似文献   

5.
Müllerian mimicry, where two unpalatable species share a warning pattern, is classically believed to be a form of mutualism, where the species involved share the cost of predator education. The evolutionary dynamics of Müllerian mimicry have recently become a controversial subject, after mathematical models have shown that if minor alterations are made to assumptions about the way in which predators learn and forget about unpalatable prey, this textbook case of mutualism may not be mutualistic at all. An underlying assumption of these models is that Müllerian mimics possess the same defence chemical. However, some Müllerian mimics are known to possess different defence chemicals. Using domestic chicks as predators and coloured crumbs flavoured with either the same or different unpalatable chemicals as prey, we provide evidence that two defence chemicals can interact to enhance predator learning and memory. This indicates that Müllerian mimics that possess different defence chemicals are better protected than those that share a single defence chemical. These data provide insight into how multiple defence chemicals are perceived by birds,and how they influence the way birds learn and remember warningly coloured prey. They highlight the importance of considering how different toxins in mimicry rings can interact in the evolution and maintenance of Müllerian mimicry and could help to explain the remarkable variation in chemical defences found within and between species.  相似文献   

6.
Müllerian mimicry, in which both partners are unpalatable to predators, is often used as an example of a coevolved mutualism. However, it is theoretically possible that some Müllerian mimics are parasitic if a weakly defended mimic benefits at the expense of a more highly defended model, a phenomenon known as ‘quasi-Batesian mimicry’. The theory expounded by Müller and extended here for unequal unpalatability, on the other hand, suggests that quasi-Batesian mimicry should be rare in comparison with classical, or mutualistic Müllerian mimicry. Evolutionarily, quasi-Batesian mimicry has consequences similar to classical Batesian mimicry, including unilateral ‘advergence’ of the mimic to the model, and diversifying frequency-dependent selection on the mimic which may lead to mimetic polymorphism. In this paper, theory and empirical evidence for mutual benefit and coevolution in Müllerian mimicry are reviewed. I use examples from well-known insect Müllerian mimicry complexes: the Limenitis–Danaus (Nymphalidae) system in North America, the Bombus–Psithyrus (Apidae) system in the north temperate zone, and the Heliconius–Laparus (Nymphalidae) system in tropical America. These give abundant evidence for unilateral advergence, and no convincing evidence, to my knowledge, for coevolved mutual convergence. Furthermore, mimetic polymorphisms are not uncommon. Yet classical mutualistic Müllerian mimicry, coupled with spatial (and possibly temporal) variation in model abundances convincingly explain these apparent anomalies without recourse to a quasi-Batesian explanation. Nevertheless, the case against classical Müllerian mimicry is not totally disproved, and should be investigated further. I hope that this tentative analysis of actual mimicry rings may encourage others to look for evidence of coevolution and quasi-Batesian effects in a variety of other Müllerian mimicry systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Experiments with wild birds feeding on pastry 'prey' were performed to test competing theories of Müllerian mimicry Conventional theories predict that all resemblances between defended prey will be mutually advantageous and, hence, Müllerian. In contrast, unconventional theories predict that, if there are inequalities in defences between mimetic species, the less well-defended prey may dilute the protection of the better defended species in a quasi-Batesian manner. This unconventional prediction follows from an assumption that birds learn about the edibilities of prey using rules of Pavlovian learning. We report on two experiments, each lasting 40 days, which showed that a moderately defended prey can dilute the protection of a better defended mimic in a quasi-Batesian fashion, but can add protection to a mimic which has the same moderate levels of defence. These results match predictions of unconventional theories of mimicry and go some way to resolving the long-running arguments over the nature of Müllerian mimicry.  相似文献   

8.
The nature of signal mimicry between defended prey (known as Müllerian mimicry) is controversial. Some authors assert that it is always mutualistic and beneficial, whilst others speculate that less well defended prey may be parasitic and degrade the protection of their better defended co-mimics (quasi-Batesian mimicry). Using great tits (Parus major) as predators of artificial prey, we show that mimicry between unequally defended co-mimics is not mutualistic, and can be parasitic and quasi-Batesian. We presented a fixed abundance of a highly defended model and a moderately defended dimorphic (mimic and distinct non-mimetic) species, and varied the relative frequency of the two forms of the moderately defended prey. As the mimic form increased in abundance, per capita predation on the model-mimic pair increased. Furthermore, when mimics were rare they gained protection from predation but imposed no co-evolutionary pressure on models. We found that the feeding decisions of the birds were affected by their individual toxic burdens, consistent with the idea that predators make foraging decisions which trade-off toxicity and nutrition. This result suggests that many prey species that are currently assumed to be in a simple mutualistic mimetic relationship with their co-mimic species may actually be engaged in an antagonistic co-evolutionary process.  相似文献   

9.
Müllerian mimicry is a classic example of adaptation, yet Müller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Müllerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Müllerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within‐community diversity in warning coloration, providing a solution to a long‐standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.  相似文献   

10.
Müllerian mimicry, where groups of chemically defended species display a common warning color pattern and thereby share the cost of educating predators, is one of the most striking examples of ecological adaptation. Classic models of Müllerian mimicry predict that all unpalatable species of a similar size and form within a community should converge on a single mimetic pattern, but instead communities of unpalatable species often display a remarkable diversity of mimetic patterns (e.g. neotropical ithomiine butterflies). It has been suggested that this apparent paradox may be explained if different suites of predators and species belonging to different mimicry groups utilize different micro-habitats within the community. We developed a stochastic individual-based model for a community of unpalatable mimetic prey species and their predators to evaluate this hypothesis and to examine the effect of predator heterogeneity on prey micro-habitat use. We found that community-level mimetic diversity was higher in simulations with heterogeneous predator micro-habitat use than in simulations with homogeneous predator micro-habitat use. Regardless of the form of predation, mimicry pattern-based assortative mating caused community-level mimetic diversity to persist. Heterogeneity in predator micro-habitat use led to an increased association between mimicry pattern and prey micro-habitat use relative to homogeneous predator micro-habitat use. This increased association was driven, at least in part, by evolutionary convergence of prey micro-habitat use when predators displayed heterogeneous micro-habitat use. These findings provide a theoretical explanation for an important question in evolutionary biology: how is community-level Müllerian mimetic diversity maintained in the face of selection against rare phenotypes?  相似文献   

11.
Both Batesian and Müllerian mimicries are considered classical evidence of natural selection where predation pressure has, at times, created a striking similarity between unrelated prey species. Batesian mimicry, in which palatable mimics resemble unpalatable aposematic species, is parasitic and only beneficial to the mimics. By contrast, in classical Müllerian mimicry the cost of predators' avoidance learning is shared between similar unpalatable co-mimics, and therefore mimicry benefits all parties. Recent studies using mathematical modeling have questioned the dynamics of Müllerian mimicry, suggesting that fitness benefits should be calculated in a way similar to Batesian mimicry; that is, according to the relative unpalatability difference between co-mimics. Batesian mimicry is very sensitive to the availability of alternative prey, but the effects of alternative prey for Müllerian dynamics are not known and experiments are rare. We designed two experiments to test the effect of alternative prey on imperfect Batesian and Müllerian mimicry complexes. When alternative prey were scarce, imperfect Batesian mimics were selected out from the population, but abundantly available alternative prey relaxed selection against imperfect mimics. Birds learned to avoid both Müllerian models and mimics irrespective of the availability of alternative prey. However, the rate of avoidance learning of models increased when alternative prey were abundant. This experiment suggests that the availability of alternative prey affects the dynamics of both Müllerian and Batesian mimicry, but in different ways.  相似文献   

12.
In 1927, Fisher suggested that Müllerian mimicry evolution could be gradual and driven by predator generalization. A competing possibility is the so-called two-step hypothesis, entailing that Müllerian mimicry evolves through major mutational leaps of a less-protected species towards a better-protected, which sets the stage for coevolutionary fine-tuning of mimicry. At present, this hypothesis seems to be more widely accepted than Fisher's suggestion. We conducted individual-based simulations of communities with predators and two prey types to assess the possibility of Fisher's process leading to a common prey appearance. We found that Fisher's process worked for initially relatively similar appearances. Moreover, by introducing a predator spectrum consisting of several predator types with different ranges of generalization, we found that gradual evolution towards mimicry occurred also for large initial differences in prey appearance. We suggest that Fisher's process together with a predator spectrum is a realistic alternative to the two-step hypothesis and, furthermore, it has fewer problems with purifying selection. We also examined the factors influencing gradual evolution towards mimicry and found that not only the relative benefits from mimicry but also the mutational schemes of the prey types matter.  相似文献   

13.
Müllerian mimicry, where unpalatable prey share common warning patterns, has long fascinated evolutionary biologists. It is commonly assumed that Müllerian mimics benefit by sharing the costs of predator education, thus reducing per capita mortality, although there has been no direct test of this assumption. Here, we specifically measure the selection pressure exerted by avian predators on unpalatable prey with different degrees of visual similarity in their warning patterns. Using wild-caught birds foraging on novel patterned prey in the laboratory, we unexpectedly found that pattern similarity did not increase the speed of avoidance learning, and even dissimilar mimics shared the education of naive predators. This was a consistent finding across two different densities of unpalatable prey, although mortalities were lower at the higher density as expected. Interestingly, the mortalities of Müllerian mimics were affected by pattern similarity in the predicted way by the end of our experiment, although the result was not quite significant. This suggests that the benefits to Müllerian mimics may emerge only later in the learning process, and that predator experience of the patterns may affect the degree to which pattern similarity is important. This highlights the need to measure the behaviour of real predators if we are to understand fully the evolution of mimicry systems.  相似文献   

14.
Strong positive density-dependence should lead to a loss of diversity, but warning-colour and Müllerian mimicry systems show extraordinary levels of diversity. Here, we propose an analytical model to explore the dynamics of two forms of a Müllerian mimic in a heterogeneous environment with two alternative model species. Two connected populations of a dimorphic, chemically defended mimic are allowed to evolve and disperse. The proportions of the respective model species vary spatially. We use a nonlinear approximation of Müller's number-dependent equations to model a situation where the mortality for either form of the mimic decreases hyberbolically when its local density increases. A first non-spatial analysis confirms that the positive density-dependence makes coexistence of mimetic forms unstable in a single isolated patch, but shows that mimicry of the rarer model can be stable once established. The two-patch analysis shows that when models have different abundance in different places, local mimetic diversity in the mimic is maintained only if spatial heterogeneity is strong, or, more interestingly, if the mimic is not too strongly distasteful. Therefore, mildly toxic species can become polymorphic in a wider range of ecological settings. Spatial dynamics thus reveal a region of Müllerian polymorphism separating classical Batesian polymorphism and Müllerian monomorphism along the mimic's palatability spectrum. Such polymorphism-palatability relationship in a spatial environment provides a parsimonious hypothesis accounting for the observed Müllerian polymorphism that does not require quasi-Batesian dynamics. While the stability of coexistence depends on all factors, only the migration rate and strength of selection appear to affect the level of diversity at the polymorphic equilibrium. Local adaptation is predicted in most polymorphic cases. These results are in very good accordance with recent empirical findings on the polymorphic butterflies Heliconius numata and H. cydno.  相似文献   

15.
Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators. Müllerian mimicry has been extensively studied, notably on Neotropical butterflies and poison frogs. However, although a very high number of aculeate species harbour putative aposematic signals, aculeates are under-represented in mimicry studies. Here, we review the literature on mimicry rings that include bee and stinging wasp species. We report over a hundred described mimicry rings, involving a thousand species that belong to 19 aculeate families. These mimicry rings are found all throughout the world. Most importantly, we identify remaining knowledge gaps and unanswered questions related to the study of Müllerian mimicry in aculeates. Some of these questions are specific to aculeate models, such as the impact of sociality and of sexual dimorphism in defence levels on mimicry dynamics. Our review shows that aculeates may be one of the most diverse groups of organisms engaging in Müllerian mimicry and that the diversity of aculeate Müllerian mimetic interactions is currently under-explored. Thus, aculeates represent a new and major model system to study the evolution of Müllerian mimicry. Finally, aculeates are important pollinators and the global decline of pollinating insects raises considerable concern. In this context, a better understanding of the impact of Müllerian mimicry on aculeate communities may help design strategies for pollinator conservation, thereby providing future directions for evolutionary research.  相似文献   

16.
Classical mimicry theory distinguishes clearly between the mutualistic resemblance between two or more defended species (muellerian mimicry), and the parasitic resemblance of a palatable species to a defended species (batesian mimicry). Modelling the behaviour of predators, without initially taking ecological complications into account, is a good strategy for exploring whether this division is valid. Two such behavioural models are described: conditioning theory, which simulates changes in motivational attack levels according to the norms of current learning theory; and saturation theory, which considers how a predator may become saturated with a particular toxic compound, and then cease feeding on the prey species that delivers it. This effect is to be clearly distinguished from simple satiation. Most formulations of the conditioning model allow the direction of reinforcement produced by a particular prey to change according the predator's current state of motivation: this leads to the existence of quasi-batesian mimicry, a parasitic mimicry between two species that could both be described as defended. At high densities, two prey species that share a chemical defense will be ‘muellerian mutualists’, mutually protecting each other against predators that have been saturated with the defensive compound. This mutualism may be accompanied by true muellerian mimicry of the colour patterns, or the patterns may be completely different. This can therefore be regarded as a form of mimicry in a non-visual communication channel. Even an apparently palatable prey species may be effectively unavailable to predators if its density is such as to deliver a particular nutrient in excess of the predator's need for a balanced diet. Such a nutrient in effect becomes a toxin, and such an abundant prey species would be partly defended and potentially able to act as the model in a mimicry system. Thus there might be protective mimicry between ‘palatable’ species, and a ‘palatable’ species might even function as the model for a ‘defended’ mimic. These unorthodox kinds of mimicry probably exist transiently during fluctuations of prey populations. It is less likely that these conditions persist for long enough to induce the evolution of mimicry, and the relationships perhaps usually occur when mimicry already exists for other reasons. Mimicry rings may be mutually stabilised by a combination of toxic mutualism and the exchange of species between the rings. Colour polymorphism in a defended species is strictly neutral whenever the population is dense enough to saturate the predator. This, as well as quasi-batesian mimicry, may help to explain the minority of warningly coloured species that are polymorphic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The two‐step hypothesis of Müllerian mimicry evolution states that mimicry starts with a major mutational leap between adaptive peaks, followed by gradual fine‐tuning. The hypothesis was suggested to solve the problem of apostatic selection producing a valley between adaptive peaks, and appears reasonable for a one‐dimensional phenotype. Extending the hypothesis to the realistic scenario of multidimensional phenotypes controlled by multiple genetic loci can be problematic, because it is unlikely that major mutational leaps occur simultaneously in several traits. Here we consider the implications of predator psychology on the evolutionary process. According to feature theory, single prey traits may be used by predators as features to classify prey into discrete categories. A mutational leap in such a trait could initiate mimicry evolution. We conducted individual‐based evolutionary simulations in which virtual predators both categorize prey according to features and generalize over total appearances. We found that an initial mutational leap toward feature similarity in one dimension facilitates mimicry evolution of multidimensional traits. We suggest that feature‐based predator categorization together with predator generalization over total appearances solves the problem of applying the two‐step hypothesis to complex phenotypes, and provides a basis for a theory of the evolution of mimicry rings.  相似文献   

18.
Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow‐black abdominal pattern by other insects (commonly called “wasp mimicry”) is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look‐alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure  1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look‐alikes.  相似文献   

19.
Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between‐species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic‐model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities.  相似文献   

20.
The relative sizes of phenotypic mutations contributing to evolutionary change has long been the subject of debate. We describe how mimicry research can shed light on this debate, and frame mimicry studies within the general context of macromutationism and micromutationism, and punctuated versus gradual evolution. Balogh and Leimar [Müllerian mimicry: an examination of Fisher's theory of gradual evolutionary change. Proc. Roy. Soc. Lond. B Biol. Sci. 272, 2269-2275] have recently used a model to readdress the question of whether or not mimicry evolves gradually along a single dimension. We extend their approach, and present the first model to consider the effect of predator generalization along multiple components on the evolution of mimicry. We find that the gradual evolution of mimicry becomes increasingly less likely as the number of signal components increases, unless predators generalize widely over all components. However, we show that the contemporary two-step hypothesis (punctuated evolution followed by gradual refinement) can explain the evolution of Müllerian mimicry under all tested conditions. Thus, although the gradual evolution of mimicry is possible, the two-step hypothesis appears more generally applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号