首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acylation reaction of biological polyamines by thalidomide has been postulated to explain the teratogenic activity of this drug ( Fabro et al. 1965 ). In a further study, thalidomide has been reported to acylate polyamines at physiological pH; the teratogenic activity of this drug appears to be linked to its high acylating power towards polyamines ( Audit 1994 ).
In the present study, the action of the thalidomide molecule and its two chemical moieties (phthalimide and glutarimide rings) on Pleurodeles embryonic development has been investigated. The phthalimide moiety, which displays acylating activity, appears to generate Pleurodeles teratogenesis. The occurrence of a correlation between acylating activity and teratogenicity was confirmed using homothalidomide and partially hydrolyzed thalidomide. The glutarimide moiety has been found to act as an enhancer of phthalimide activity and to cause moderate alterations of newt development.
As the acylation of polyamines by thalidomide would deprive the embryo of these essential compounds, the effects of polyamine biosynthesis inhibitors have been compared to those of thalidomide. Both thalidomide and polyamine antimetabolites altered the early cleavage process of the Pleurodeles egg and arrested early development.  相似文献   

2.
Despite the recent discovery that thalidomide causes limb defects by targeting highly angiogenic, immature blood vessels, several challenges still remain and new ones have arisen. These include understanding the drug's species specificity, determining molecular target(s) in the endothelial cell, shedding light on the molecular basis of phocomelia and producing a form of the drug that is clinically effective without having side effects. Now that the trigger of thalidomide‐induced teratogenesis has been uncovered, a framework is proposed, incorporating and uniting previous models of thalidomide action, explaining how thalidomide causes not just limb defects, but also all the other defects it induces.  相似文献   

3.
Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.  相似文献   

4.
5.
6.
The inhibitory effect of drug treatment on tumor cell attachment to plastic surfaces coated with concanavalin A correlates well with the invivo teratogenicity of the drug. Using attachment as an assay, the effects of thalidomide and some of its metabolites have been examined for inhibitory activity. While thalidomide and its hydrolysis products did not alter attachment, metabolites of thalidomide produced by incubation of the drug with murine liver microsomes were inhibitory. Generation of inhibitory products required the presence of glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase and magnesium chloride. The degree of inhibition was dependent on the duration of incubation at 37°C. These results suggest a model for the teratogenic action of thalidomide in which metabolites of the drug alter cell surface function leading to interference with normal morphogenic cell to cell interactions.  相似文献   

7.
Thalidomide was once administered to pregnant women as a mild sedative; however, it was subsequently shown to be strongly teratogenic. Recently, there has been renewed interest in thalidomide because of its curative effects against intractable diseases. However, the teratogenicity of thalidomide is manifested in various ways and is still not fully understood. In the present study, we evaluated the effects of thalidomide on early mesodermal differentiation by examining the differentiation of human induced pluripotent stem cells (hiPSCs). The most common symptom of thalidomide teratogenicity is limb abnormality, which led us to hypothesize that thalidomide prevents early mesodermal differentiation. Therefore, mesodermal differentiation of hiPSCs was induced over a 6-d period. To induce early mesoderm differentiation, 1 d after seeding, the cells were incubated with the small molecule compound CHIR99021 for 3 d. Thalidomide exposure was initiated at the same time as CHIR99021 treatment. After 5 d of thalidomide exposure, the hiPSCs began expressing a mesodermal marker; however, the number of viable cells decreased significantly as compared to that of control cells. We observed that the proportion of apoptotic and dead cells increased on day 2; however, the proportion of dead cells on day 5 had decreased, suggesting that the cells were damaged by thalidomide during early mesodermal differentiation (days 0–2). Our findings may help elucidate the mechanism underlying thalidomide teratogenicity and bring us closer to the safe use of this drug.  相似文献   

8.
Over the past 50 years, thalidomide has been a target of active investigation in both malignant and inflammatory conditions. Although initially developed for its sedative properties, decades of investigation have identified a multitude of biological effects that led to its classification as an immunomodulatory drug (IMiD). In addition to suppression of tumor necrosis factor-alpha (TNF-alpha), thalidomide effects the generation and elaboration of a cascade of pro-inflammatory cytokines that activate cytotoxic T-cells even in the absence of co-stimulatory signals. Furthermore, vascular endothelial growth factor (VEGF) and beta fibroblast growth factor (bFGF) secretion and cellular response are suppressed by thalidomide, thus antagonizing neoangiogenesis and altering the bone marrow stromal microenvironment in hematologic malignancies. The thalidomide analogs, lenalidomide (CC-5013; Revlimid) and CC-4047 (Actimid), have enhanced potency as inhibitors of TNF-alpha and other inflammatory cytokines, as well as greater capacity to promote T-cell activation and suppress angiogenesis. Both thalidomide and lenalidomide are effective in the treatment of multiple myeloma and myelodysplastic syndromes for which the Food and Drug Administration granted recent approval. Nonetheless, each of these IMiDs remains the subject of active investigation in solid tumors, hematologic malignancies, and other inflammatory conditions. This review will explore the pharmacokinetic and biologic effects of thalidomide and its progeny compounds.  相似文献   

9.
The process of angiogenesis has been found to be essential for the development of estrogen-induced pituitary prolactinoma in Fischer 344 rats. Thalidomide [(alpha-(N-phthalimido)-glutarimide] is known to be a potent immunomodulatory drug with antiangiogenic properties, but its effect on lactotroph cell secretory function and pituitary prolactinoma formation has not been described yet. The purpose of this study was to examine the effects of thalidomide on secretion of prolactin (PRL) and vascular endothelial growth factor (VEGF), cell proliferation, apoptosis and angiogenesis within the anterior pituitary gland in long-term diethylstilboestrol (DES)-treated male F344 rats in vivo and in vitro. It was found that DES sharply increased serum PRL and VEGF levels. On the other hand, simultaneous treatment of F344 rats with thalidomide for the last 15 days of the experiment attenuated the stimulatory effect of DES on PRL and VEGF secretion. It also diminished prolactin cell proliferation evaluated as the number of proliferating cell nuclear antigen (PCNA)-positive stained cell nuclei and increased the number of apoptotic bodies determined by the terminal deoxynucleotidyl-mediated dUTP nick-end labeling (TUNEL) method in sections of the DES-induced pituitary prolactinoma. The density of pituitary microvessels evaluated by microscopic counting of CD-31-positive blood vessels was also diminished by the tested drug. In addition, thalidomide (10(-4) to 10(-6) M) inhibited cell proliferation, prolactin and VEGF secretion from rat pituitary prolactinoma cells cultured in vitro. In conclusion, our results provide strong evidence for the antiprolactin and antitumor activity of thalidomide in experimentally DES-induced pituitary adenoma.  相似文献   

10.
Nearly 60 years ago thalidomide was prescribed to treat morning sickness in pregnant women. What followed was the biggest man‐made medical disaster ever, where over 10,000 children were born with a range of severe and debilitating malformations. Despite this, the drug is now used successfully to treat a range of adult conditions, including multiple myeloma and complications of leprosy. Tragically, a new generation of thalidomide damaged children has been identified in Brazil. Yet, how thalidomide caused its devastating effects in the forming embryo remains unclear. However, studies in the past few years have greatly enhanced our understanding of the molecular mechanisms the drug. This review will look at the history of the drug, and the range and type of damage the drug caused, and outline the mechanisms of action the drug uses including recent molecular advances and new findings. Some of the remaining challenges facing thalidomide biologists are also discussed. Birth Defects Research (Part C) 105:140–156, 2015. © 2015 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.  相似文献   

11.
Recent research and clinical evidence suggest that thalidomide could potentially be used to treat inflammation associated with Crohn's disease. However, systemic side effects associated with large doses of this drug have limited its widespread use. Treatment, with thalidomide would prove more efficacious if the drug could be delivered directly to target areas in the gut, thereby reducing systemic circulation. Microcapsule encapsulation could enable direct delivery of the drug. To assess the latter, we designed and tested drug-targeting release characteristics of alginate-poly-l-lysine-alginate (APA) microcapsules in simulated gastrointestinal environments. The results show that APA capsules enabled delivery of thalidomide in the middle and distal portions of the small intestine. We also compared the APA membrane formulation with an earlier designed alginate chitosan (AC) membrane thalidomide formulation. The results show that both APA and AC capsules allow for successful delivery of thalidomide in the gut and could prove beneficial in the treatment of Crohn's disease. However, further research is required.  相似文献   

12.
目的:观察茶多酚联合反应停对人肺腺癌生长的抑制作用;为研究茶多酚抗肿瘤血管生成提供依据。方法:人源肺腺癌(A549)细胞系经传代培养后,以BALB/c-nu裸鼠进行肿瘤移植,并以茶多酚,反应停及其联合用药进行干预性治疗,通过观察抑瘤率评价单用及联合用药对A549移植瘤生长抑制作用。结果:茶多酚、反应停及联合用药组的抑瘤率分别为33%、21.6%和35.9%,茶多酚、联合用药组与模型组相比有统计学意义(P<0.05);联合用药组与单用药组比,无统计学意义(P>0.05)。结论:茶多酚对A549生长有明显的抑制效果;反应停对A549的抑制作用需进一步观察;两者联合使用未见明显增效作用。  相似文献   

13.
BACKGROUND: The monocyte-derived cytokine, tumor necrosis factor alpha (TNF alpha), is essential for host immunity, but overproduction of this cytokine may have serious pathologic consequences. Excess TNF alpha produced in pulmonary tuberculosis may cause fevers, weakness, night sweats, necrosis, and progressive weight loss. Thalidomide (alpha-N-phthalimidoglutarimide) has recently been shown to suppress TNF alpha production by human monocytes in vitro and to reduce serum TNF alpha in leprosy patients. We have therefore conducted a two-part placebo-controlled pilot study of thalidomide in patients with active tuberculosis to determine its effects on clinical response, immune reactivity, TNF alpha levels, and weight. MATERIALS AND METHODS: 30 male patients with active tuberculosis, either human immunodeficiency virus type 1 positive (HIV-1+) or HIV-1-, received thalidomide or placebo for single or multiple 14 day cycles. Toxicity of the study drug, delayed type hypersensitivity (DTH), cytokine production, and weight gain were evaluated. RESULTS: Thalidomide treatment was well tolerated, without serious adverse events. The drug did not adversely affect the DTH response to purified protein derivative (PPD), total leukocyte, or differential cell counts. TNF alpha production was significantly reduced during thalidomide treatment while interferon-gamma (IFN gamma) production was enhanced. Daily administration of thalidomide resulted in a significant enhancement of weight gain. CONCLUSIONS: The results indicate that thalidomide is well tolerated by patients receiving anti-tuberculosis therapy. Thalidomide treatment reduces TNF alpha production both in vivo and in vitro and is associated with an accelerated weight gain during the study period.  相似文献   

14.
BACKGROUND: Tumor necrosis factor alpha (TNF alpha) is thought to mediate both protective and detrimental manifestations of the inflammatory response. Recently, thalidomide (alpha-N-phthalimidoglutarimide) was shown to partially inhibit monocyte TNF alpha production (by 50-70%) both in vivo and in vitro. More efficient inhibition of TNF alpha may, however, be necessary to rescue the host from more acute and extensive toxicities of TNF alpha-mediated inflammation. MATERIALS AND METHODS: Three structural analogues of thalidomide were selected for study based on increased activity against TNF alpha production. The parent drug and the analogs were tested in vitro in human peripheral blood mononuclear cell cultures for their effects on lipopolysaccharide (LPS) induced cytokine protein and mRNA production using ELISAs and Northern blot hybridization. The in vitro effects of the drugs were then confirmed in vivo in a mouse model of LPS induced lethality. RESULTS: The new compounds (two esters and one amide) showed increased inhibition of TNF alpha production by LPS-stimulated human monocytes, relative to the parent drug thalidomide. The analogs and the parent drug enhanced the production of interleukin 10 (IL-10), but had little effect on IL-6 and IL-1 beta protein and mRNA production. When tested in vivo, the amide analog protected 80% of LPS-treated mice against death from endotoxin induced shock. CONCLUSIONS: Analogs of thalidomide designed to better inhibit TNF alpha production in vitro have correspondingly greater efficacy in vivo. These finding may have therapeutic implication for the treatment of human diseases characterized by acute and extensive TNF alpha production such as tuberculous meningitis or toxic shock.  相似文献   

15.
16.
Thalidomide as an anti-cancer agent   总被引:3,自引:0,他引:3  
Thalidomide is a glutamic acid derivative initially introduced as a sedative hypnotic nearly forty years ago. It was withdrawn following numerous reports linking it to a characteristic pattern of congenital abnormalities in babies born to mothers who used the drug for morning sickness. It has gradually been re-introduced into clinical practice over the past two decades, albeit under strict regulation, since it was found to be useful in the management of erythema nodosum leprosum and HIV wasting syndrome. Recognition of its anti-angiogenic effect led to its evaluation in the treatment of various malignancies, where angiogenesis has been shown to play an important role. Numerous clinical trials done over the past four years have confirmed the significant anti-myeloma activity of this drug. It has also shown promise in preliminary trials in the treatment of a variety of different malignant diseases. The mechanisms of its antineoplastic effects continue to be the focus of ongoing research. It has become clear that even though its anti angiogenic effects play a significant role in the anti-tumor activity, there are other properties of this drug which are responsible as well. It also possesses anti-TNF alpha activity, which has led to its evaluation in several inflammatory states. In this concise review, we briefly describe the historical background and pharmacological aspects of this drug. We have concisely reviewed the current knowledge regarding mechanisms of its anti-neoplastic activity and the results of various clinical trials in oncology.  相似文献   

17.
Inflammation is present in all stages of atherosclerosis, from fatty streaks to rupture of mature plaques. Tumour necrosis factor (TNF)-alpha is expressed in atherosclerotic lesions but its role in atherogenesis has not been defined. To clarify the role of this cytokine, we administered thalidomide, a compound known to inhibit TNF-alpha production, to homozygous apolipoprotein E-deficient (apoE-/-) mice in order to examine the effect of thalidomide on the development of early atherosclerotic lesions. Twelve apoE-/- mice were randomized to receive either sustained-release thalidomide or placebo pellets implanted subcutaneously, and the amount of atherosclerosis was quantified six weeks later. Thalidomide was well tolerated and did not result in any changes in body weight. Mice treated with thalidomide had significantly smaller mean (7986 +/- 5189 vs 19607 +/- 10353 microns 2, p = 0.05) and maximum (15800 [12777-23675] vs 37169 [28000-41351] microns 2, p = 0.03) lesion sizes than those treated with placebo. Thus, thalidomide is capable of inhibiting the early development of atherosclerosis, presumably by inhibition of TNF-alpha secretion.  相似文献   

18.
Because of the reintroduction into human therapeutics of thalidomide, a recognized developmental toxicant in humans, there has been concern about its potential for inducing other health effects as well. The present study is concerned with the possible mutagenicity and carcinogenicity of this chemical. Using the expert system, META, a series of putative metabolites of thalidomide was generated. In addition to the known or hypothesized metabolites of thalidomide (N=12), a number of additional putative metabolites (N=131) were identified by META. The structures of these chemicals were subjected to structure-activity analyses using predictive CASE/MULTICASE models of developmental toxicity, rodent carcinogenicity and mutagenicity in Salmonella. While thalidomide and some of its putative metabolites were predicted to be developmental toxicants, none of them were predicted to be rodent carcinogens. Putative metabolites containing the hydroxamic acid or hydroxylamine moieties were predicted to be mutagens. None of the 'known' metabolites of thalidomide contained these reactive moieties. Whether such intermediates are indeed generated or whether they are generated and are either unstable in the presence of oxygen or react rapidly with nucleophiles is unknown.  相似文献   

19.
Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution.  相似文献   

20.
《Chirality》2017,29(6):282-293
Enantiomeric thalidomide undergoes various kinds of biotransformations including chiral inversion, hydrolysis, and enzymatic oxidation, which results in several metabolites, thereby adding to the complexity in the understanding of the nature of thalidomide. To decipher this complexity, we analyzed the multidimensional metabolic reaction networks of thalidomide and related molecules in vitro . Characteristic patterns in the amount of various metabolites of thalidomide and related molecules generated during a combination of chiral inversion, hydrolysis, and hydroxylation were observed using liquid chromatography–tandem mass spectrometry and chiroptical spectroscopy. We found that monosubstituted thalidomide derivatives exhibited different time‐dependent metabolic patterns compared with thalidomide. We also revealed that monohydrolyzed and monohydroxylated metabolites of thalidomide were likely to generate mainly by a C‐5 oxidation of thalidomide and subsequent ring opening of the hydroxylated metabolite. Since chirality was conserved in most of these metabolites during metabolism, they had the same chirality as that of nonmetabolized thalidomide. Our findings will contribute toward understanding the significant pharmacological effects of the multiple metabolites of thalidomide and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号