首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. RNA degradation in isolated rat hepatocytes was measured as the release of radioactive cytidine from fed rats previously labeled in vivo for 60 h with [6-14C]orotic acid. Rates were determined from the linear accumulation of [14C]cytidine between 30 and 120 min of incubation in the presence of 0.5 mM unlabeled cytidine to suppress reutilization. 2. In the absence of amino acids, rates of RNA degradation in isolated hepatocytes averaged 3.97%/h. A complete mixture of amino acids added at 10-20 times normal plasma concentration inhibited RNA degradation by 65-70%. However, at physiological concentrations of amino acids, RNA degradation in isolated rat hepatocytes was less responsive as compared to perfused rat livers. 3. Numerous and large autophagic vacuoles at various stages of digestion were identified throughout the cytoplasm of isolated hepatocytes after 2 h of incubation in the absence of amino acids. The addition of amino acids at 20 times normal plasma concentration abolished almost completely the appearance of autophagic vacuoles. Furthermore, prophylamine, which accumulates in lysosomes, suppressed RNA degradation by 65% and the inhibitor of autophagic vacuole formation, 3-methyladenine, inhibited 70-80% of the degradation. Taken together, these results strongly suggest a contribution of the lysosomal system in the increase of RNA degradation rates in isolated rat hepatocytes.  相似文献   

2.
The role of amino acids in the regulation of RNA degradation was investigated in cultured hepatocytes from fed rats previously labeled in vivo with [6-14C]orotic acid. Rates of RNA degradation were determined between 42 and 48 h of culture from the release of radioactive cytidine in the presence of 0.5 mM unlabeled cytidine. The fractional rate was about 4.4 +/- 0.4%/h in the absence of amino acids (0x). The catabolism of RNA was decreased to basal level (1.5 +/- 0.3%/h) by the addition of amino acids at 10 times normal plasma concentration (10x). The inhibition of RNA degradation, expressed as percentage of maximal deprivation-induced response (0x minus 10x), averaged 60% at normal plasma levels of amino acids. The degree of responsiveness was greatly improved as compared to freshly isolated hepatocytes (20%) and was similar to the sensitivity previously observed with perfused livers. In cultured hepatocytes, the sensitivity of RNA degradation to amino acids was not affected by varying the volume of medium from 1 to 4 ml per dish. In freshly isolated hepatocytes, the inhibitory effect of amino acids was not modified by changing the cell density from 0.5 to 5 x 10(6) cells per ml. In the range of normal plasma concentration of amino acids, the low sensitivity of RNA degradation in isolated hepatocytes persisted with inhibition ranging from 10 to 20%. These findings suggest that the control of RNA degradation in both cultured and isolated hepatocytes is not affected by the total quantity of amino acids available in the medium, but their concentration is crucial. Electron microscopy observations and the inhibitory effect of 3-methyl-adenine in cultured rat hepatocytes partially confirmed the role of the lysosomal system in the increase of RNA degradation and its regulation by amino acids.  相似文献   

3.
The breakdown of RNA and of long-lived proteins in rat liver is believed to occur largely within the lysosomal-vacuolar system. Both processes are induced by amino acid lack and suppressed by insulin, and in all circumstances a consistent lag of 15-20 min was observed between the introduction of a physiological regulator and onset of the degradative response. This lag has allowed us to determine rates of liver RNA degradation in vivo during brief cyclic perfusions, as was done previously for long-lived-protein breakdown [Hutson & Mortimore (1982) J. Biol. Chem. 257, 9548-9554]. Degradation was measured from the release of [14C]cytidine in livers of rats previously labelled in vivo with [6-14C]orotic acid. Release was linear and unaffected by physiological regulators between 2 and 12 min of perfusion. In contrast with protein breakdown, no short-lived component was observed. In animals trained to feed between 16:00 and 20:00 h, the content of liver RNA fell at an average rate of 0.26 mg/h per 100 g initial body wt. between 07:00 and 16:00 h, a loss that was within 9% of that predicted from the net release (total release minus reutilization) of cytidine in vivo. In addition, the total rate of RNA degradation determined at the end of the meal was only 12% of that at the start of the post-absorptive period 14 h later (2.1 versus 17.1%/day). This finding is fully consistent with a lysosomal mechanism for RNA degradation, since autophagy is strongly suppressed by food intake. This approach provides a comparatively simple means of approximating moment-to-moment rates of RNA degradation in the rat liver in vivo.  相似文献   

4.
Past evidence has suggested that the lysosomal pathway is an important site of cytoplasmic RNA degradation in the hepatic parenchymal cell (Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E. (1987) J. Biol. Chem. 262, 14507-14519). We now provide additional support for this notion by quantitating degradable RNA in lysosomes and correlating its pool size with hepatic RNA degradation. Rat livers, previously labeled with [6-14C]orotic acid, were perfused with graded levels of amino acids over the full range of induced autophagy; RNA degradation was determined from [14C]cytidine release. Close correspondence between the marker beta-acetylglucosaminidase and the breakdown of RNA to cytidine in subcellular fractions indicated that the lysosome was the main site of catabolism, a conclusion supported by the fact that degradation was enhanced when external pH was lowered from 7 to 6. Although [14C]cytidine was also released in homogenates by the action of natural ribonucleases on cytosolic RNA, this source was eliminated by unlabeled exogenous RNA. The size of the degradable RNA pool in lysosomes, determined from the total release of cytidine in homogenates, correlated directly with rates of hepatic RNA degradation over the full range of basal and induced degradation. A direct correlation was also seen between RNA degradation and cytidine pools within lysosomal particles. Because cytosolic cytidine was not taken up by lysosomes under these conditions, the pool could only have arisen from the breakdown of intralysosomal RNA. As determined by cytidine production, these findings support the view that the lysosomal-vacuolar system is the main, if not sole, site of induced and basal RNA degradation in liver.  相似文献   

5.
The control of RNA degradation by amino acids, insulin, and glucagon was investigated in perfused livers of fed rats previously labeled in vivo with [6-14C] orotic acid; rates were determined from the release of [14C]cytidine in the presence of 0.5 mM cytidine to suppress reutilization. Studies with cyclically perfused livers showed that plasma amino acids at 10 times (10X) normal concentrations inhibited RNA breakdown by 85%. Similar inhibition was obtained with a known regulatory amino acid mixture (Leu, Met, Pro, Trp, and His), whereas leucine alone (0.8 mM) decreased degradation by 47%. Perfusions carried out in the single-pass mode with graded levels of plasma amino acids revealed that the acceleration of RNA degradation over the full range of amino acid deprivation (0 to 10X normal levels) was the same as that for protein breakdown (3.19 and 3.15% h-1, respectively), and both were equally suppressed by insulin (2.4 micrograms h-1). Glucagon (10 micrograms h-1), though, was far less effective in stimulating RNA than protein turnover. A direct comparison of the two dose responses revealed a strong dissociation at 1 and 2 times normal amino acid levels. These findings support the notion that RNA and protein are degraded within a single macroautophagic compartment during amino acid and insulin deprivation. Glucagon, however, appeared to induce a second pathway in which the proportion of sequestered RNA to protein was selectively reduced. Electron micrographs showed that the ratio of vacuoles containing rough as compared with smooth endoplasmic reticulum was decreased by nearly 80% under these conditions.  相似文献   

6.
Fructose effect to suppress hepatic glycogen degradation   总被引:2,自引:0,他引:2  
The effect of fructose on glycogen degradation was examined by measuring the flux of 14C from prelabeled glycogen in perfused rat livers. During 2-h refeeding of 24-h-fasted rats, newly synthesized hepatic glycogen was labeled by intraperitoneal injection of [U-14C] galactose (0.1 mg and 0.02 microCi/g of body weight). The livers of refed rats were then perfused in a nonrecirculating fashion for an initial 30 min with glucose alone (10 mM) for the following 60 min with glucose (10 mM) without (n = 5) or with fructose (1, 2, or 10 mM; n = 5 for each). When livers were exposed to fructose, release of label into the perfusate immediately declined and remained markedly suppressed through the end of perfusion (p less than 0.05). The suppression was dose-dependent; at steady state (50-70 min), label release was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose, respectively (p less than 0.0001). Suppression was not accompanied by significant changes in the activities of glycogen synthase or phosphorylase assessed in vitro. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (Fru-1-P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.60 mumol/g of liver with 1, 2, and 10 mM fructose, respectively; p less than 0.0001). Maximum inhibition of label release was 82%; the Fru-1-P concentration for half inhibition was 0.57 mumol/g of liver, well within the concentration of Fru-1-P attained during refeeding. We conclude that fructose enhances net glycogen accumulation in liver by suppressing glycogenolysis and that the suppression is presumably caused by allosteric inhibition of phosphorylase by Fru-1-P.  相似文献   

7.
The number, size, solubility in chloroform/methanol and some aspects of the formation of the components labeled by radioactive amino acids in isolated mitochondria of rat liver and Zajdela hepatoma were studied. Isolated mitochondria were labeled with radioactive amino acids under various conditions, and the distribution of radioactivity in sodium dodecylsulfate-polyacrylamide gels after electrophoresis of mitochondrial membrane fraction was analysed. 1. Isolated mitochondria of rat liver and Zajdela hepatoma incroporated radioactive amino acids almost exclusively into the membrane fraction. Electrophoretic analysis of this fraction revealed the presence of 15 distinct peaks of radioactivity with corresponding apparent molecular weights of 10 000 to 58 000. The electrophoretic mobility of the labeled components was identical and the general pattern of the radioactivity distribution in the gel for the rat liver and the tumour mitochondria was very similar. 2. Components of the membrane fraction of rat liver mitochondria labeled in vitro displayed an unequal solubility in acidic (2 mM HC1) chloroform/methanol (2/1) mixture; as detected by sodium dodecylsulfate-polyacrylamide gel electrophoresis a single labeled component with apparent molecular weight of 10 000 was soluble in neutral chloroform/methanol. 3. Inverse relation was observed between amino acid incorporation activity of isolated mitochondria and the portion of the label incorporated into the component with apparent molecular weight 10 000. The identity of this component with that soluble in neutral chloroform/methanol mixture has been indicated. 4. The rate of incorporation of [3H]leucine by isolated Zajdela hepatoma mitochondria into the components with lower (10 000-25 000) apparent molecular weights decreased with time, whereas that into components with higher (above 25 000) apparent molecular weight remained approximately constant within the time interval tested (30 min). 5. From the total radioactivity incorporated into the membrane fraction during 5-min pulse labeling of isolated Zajdela hepatoma mitochondria by [3H]leucine up to 25% was recovered in the region of the gel corresponding to a component with apparent molecular weight 10 000. After 25 min chase the radioactivity in this region decreased about 3.5 times while the specific radioactivity of the total membrane fraction did not change significantly. The pattern of radioactivity distribution observed after the pulse was preserved by chloramphenicol. 6. Unlabeled sonicated mitochondria or postribosomal supernatant from rat liver regenerating in the presence of chloramphenicol were incubated with neutral chloroform/methanol extract of in vitro with [14C]leucine labeled rat liver mitochondria. After this incubation several labeled components with apparent molecular weights above 10 000 were recovered in the electrophoreograms of the originally unlabeled fractions.  相似文献   

8.
The pancreatic B cell has been used as a model to compare the release of newly synthesized prohormone/hormone with that of stored hormone. Secretion of newly synthesized proinsulin/insulin (labeled with [3H]leucine during a 5-min pulse) and stored total immunoreactive insulin was monitored from isolated rat pancreatic islets at basal and stimulatory glucose concentrations over 180 min. By 180 min, 15% of the islet content of stored insulin was released at 16.7 mM glucose compared with 2% at 2.8 mM glucose. After a 30-min lag period, release of newly synthesized (labeled) proinsulin and insulin was detected; from 60 min onwards this release was stimulated up to 11-fold by 16.7 mM glucose. At 180 min, 60% of the initial islet content of labeled proinsulin was released at 16.7 mM glucose and 6% at 2.8 mM glucose. Specific radioactivity of the released newly synthesized hormone relative to that of material in islets indicated its preferential release. A similar degree of isotopic enrichment of released, labeled products was observed at both glucose concentrations. Quantitative HPLC analysis of labeled products indicated that glucose had no effect on intracellular proinsulin to insulin conversion; release of both newly synthesized proinsulin and insulin was sensitive to glucose stimulation; 90% of the newly synthesized hormone was released as insulin; and only 0.5% of proinsulin was rapidly released (between 30 and 60 min) in a glucose-independent fashion. It is thus concluded that the major portion of released hormone, whether old or new, processed or unprocessed, is directed through the regulated pathway, and therefore the small (less than 1%) amount released via a constitutive pathway cannot explain the preferential release of newly formed products from the B cell.  相似文献   

9.
Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation. In summary, these results indicate that the loss of cell surface insulin receptors in adipocytes involves: 1) initial internalization of the receptors to a nondegradative intracellular compartment by a process that is relatively insensitive to ATP depletion, followed by 2) a highly energy-dependent unidirectional translocation of the receptors from this compartment to chloroquine-sensitive site(s) of degradation.  相似文献   

10.
Isolation and separation of rat liver cells into endothelial, Kupffer, and parenchymal cell fractions were performed at different times after injection of human 125I-acetyl low density lipoproteins (LDL). In order to minimize degradation and redistribution of the injected lipoprotein during cell isolation, a low temperature (8 degrees C) procedure was applied. Ten min after injection, isolated endothelial cells contained 5 times more acetyl-LDL apoprotein per mg of cell protein than the Kupffer cells and 31 times more than the hepatocytes. A similar relative importance of the different cell types in the uptake of acetyl-LDL was observed 30 min after injection. For studies on the in vitro interaction of endothelial and Kupffer cells with acetyl-LDL, the cells were isolated with a collagenase perfusion at 37 degrees C. Pure endothelial (greater than 95%) and purified Kupffer cells (greater than 70%) were obtained by a two-step elutriation method. It is demonstrated that the rat liver endothelial cell possesses a high affinity receptor specific for the acetyl-LDL because a 35-fold excess of unlabeled acetyl-LDL inhibits association of the labeled compound for 70%, whereas unlabeled native human LDL is ineffective. Binding to the acetyl-LDL receptor is coupled to rapid uptake and degradation of the apolipoprotein. Addition of the lysosomotropic agents chloroquine (50 microM) or NH4Cl (10 mM) resulted in more than 90% inhibition of the high affinity degradation, indicating that this occurs in the lysosomes. With the purified Kupffer cell fraction, the cell association and degradation of acetyl-LDL was at least 4 times less per mg of cell protein than with the pure endothelial cells. Although cells isolated with the cold pronase technique are also still able to bind and degrade acetyl-LDL, it appeared that 40-60% of the receptors are destroyed or inactivated during the isolation procedure. It is concluded that the rat liver endothelial cell is the main cell type responsible for acetyl-LDL uptake.  相似文献   

11.
Cycloheximide at concentrations above 18 muM produced a 93% inhibition of total protein synthesis measured by valine incorporation in the perfused rat liver. Rates of protein degradation were estimated by perfusing livers prelabeled in vivo with L-[1-14C]valine with medium containing 15 mM L-valine. Thus labeled valine released from liver protein during perfusion was greatly diluted and reincorporation of label was minimized. Cycloheximide at 18 muM inhibited protein degradation by over 60%, after a delay of 15-20 min. Associated with these effects were dose-dependent increases in the rates of glucose and urea production. Glucose production increased 3 fold, from 0.54 +/- 0.07 in control to 1.85 +/- 0.24 mumol/min/100 g rat in cycloheximide-treated livers. Urea production increased from 0.24 +/- 0.02 to 0.62 +/- 0.06 mumol/min/100 g rat. No changes in liver glycogen or cyclic AMP content were seen. The data suggest that inhibition of protein synthesis provides an increased availability of intra-cellular amino acids and that many of these are rapidly degraded, yielding urea and glucose. This is supported by the fact that intracellular alanine levels were significantly increased following cycloheximide treatment. It is possible that the inhibition of protein degradation by cycloheximide is due to altered intra-cellular pools of amino acids or their metabolites.  相似文献   

12.
By continuous perfusion of columns containing isolated immobilized rat liver nuclei with media containing labeled RNA precursors, the in vitro synthesis and release of RNA was studied. The combined reaction of synthesis and release could be adjusted to proceed at a constant rate. The reaction rate responded to variation of termperature, ionic conditions, nucleoside triphosphate concentration and to the addition of RNA polymerase inhibitors. During 60 min perfusion approximately equal amounts of radioactive low molecular weight RNA and of ribonucleoproteins were released. Pulse-chase experiments showed that the low molecular weight RNA was synthesized throughout the perfusion and released immediately after formation. The ribonucleoproteins were primarly labeled during the first period of perfusion and were gradually released. Synthesis of RNA contained in the ribonucleoproteins was inhibited by low alpha-amanitin concentrations, indicating that it was catalyzed by RNA polymerase II. The in vitro labeled ribonucleoproteins exhibited properties of the stable nuclear particles which can be extracted from isolated nuclei after rapid in vivo labeling of RNA. They had a buoyant density of 1.41--1.43 in CsCl, were partially unstable in 1% deoxycholate, but stable in 0.1% deoxycholate, in 100 mM NaCl and in 10 mM EDTA. Due to the dilution by the perfusion medium, the ribonucleoproteins sedimented with a peak at 22--27 S, and not at 30--45 S. The RNA synthesized in the immobilized nuclei was not degraded during the perfusion. Less than 20% was gradually released, whereby the 20--30 S peak zone was reduced. While the properties of the in vitro labeled ribonucleoproteins and of rapidly in vivo labeled ribonucleoproteins were the same, the kinetics of their release differed.  相似文献   

13.
1. In the presence of near-physiological glutamine concentrations, exposure of perfused rat liver to hypotonic perfusion media switched glutamine balance across the liver from net release to net uptake. This was due to both stimulation of flux through glutaminase and inhibition of flux through glutamine synthetase. Conversely, during exposure to hypertonic media, net glutamine release from the liver increased due to inhibition of glutaminase flux and slight stimulation of flux through glutamine synthetase. The effect of perfusate osmolarity on glutaminase flux was observed at an NH4Cl concentration (0.5 mM) sufficient for near-maximal ammonia stimulation of glutaminase. This indicates the involvement of different mechanisms of glutaminase flux control by extracellular osmolarity changes and ammonia. The effects of anisotonicity on flux through glutamine-metabolizing enzymes were fully reversible. Glutamine (0.6 mM) stimulated urea synthesis from NH4Cl (0.5 mM) during hypotonic and normotonic conditions. 2. Exposure to hypotonic and hypertonic media led, after initial liver-cell swelling and shrinkage, respectively to volume-regulatory K+ fluxes which largely restored the initial liver-cell volume despite the continuing osmotic challenge. Even after completion of cell-volume regulatory K+ fluxes, the effects of perfusate osmolarity on hepatic glutamine metabolism persisted. This indicates that in anisotonicity the liver cell is left in an altered metabolic state, even after completion of volume-regulatory responses. 3. During perfusion with isotonic media, addition of glutamine (3 mM) led to an increase of liver mass by about 4% within 2 min, which was accompanied by a net K+ uptake by the liver. Thereafter, the new steady state of increased liver mass was maintained throughout glutamine infusion. When the liver mass had reached this new steady state, a net release of K+ from the liver of about 3 mumol/g liver was observed during the following 10 min. Withdrawal of glutamine was followed by a slow reuptake of K+ and the liver mass returned to its initial value. Following exposure to glutamine (3 mM), the intracellular glutamine concentration (as calculated from glutamine tissue levels, taking into account the extracellular space determined with the [3H]inulin technique) rose from about 1 mM to 30-35 mM within about 12 min, indicating a 10-12-fold concentrative uptake of glutamine into the liver cells and an osmotic challenge for the hepatocyte. When intracellular glutamine had reached its steady-state concentration, net K+ efflux from the liver was also terminated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
An endoribonuclease existing as a complex with inhibitor in the cytosol of rat liver has been purified about 128,000-fold after inactivation of the inhibitor with CdCl2. The enzyme had a molecular weight of 16,000 and produced 3'-CMP via 2',3'-cyclic phosphate of cytidine from poly(C). The breakdown of poly(U) by the enzyme was less than 5% of poly(C) breakdown. Poly(A) was not hydrolyzed by the enzyme. The enzyme had a pH optimum of 7.5-8, was heat-stable and had a Km of 952 micrograms yeast RNA and a Km of 198 micrograms poly(C) per ml. The maximal velocities for yeast RNA and poly(C) degradation were 3,970 A260/min/mg protein and 1,890 A260/min/mg protein, respectively. The enzyme was slightly stimulated by polyamines or monovalent and divalent cations except Mn2+, but was inhibited by nucleoside triphosphate, poly(G) and rat liver RNase inhibitor. Inhibition of the enzyme by rat liver RNase inhibitor was not prevented by monovalent and divalent cations or polyamines, although inhibition by poly(G) was prevented by these ions.  相似文献   

15.
The dose-dependent effect of ethanol on the hepatic metabolism of the perfused rat liver has been investigated by (a) 31P-NMR spectroscopy for the follow-up of intracellular phosphorylated metabolites and (b) HPLC for compounds released in the effluents. Perfusion of livers from fed rats with ethanol induced an increase in the level of sn-glycerol 3-phosphate and net accumulations of 3.30 +/- 0.33 and 0.69 +/- 0.15 mumol x g-1 wet liver were reached after 20 min, for 70 mM and 0.5 mM ethanol, respectively. sn-Glycerol-3-phosphate accumulation was fully detected by 31P NMR as indicated by comparing quantitations based on NMR and biochemical assays. Ethanol administration up to a concentration of 10 mM induced a dose-dependent decrease in the release of lactate + pyruvate by the liver. Lactate release decreased from 1129 +/- 39 to 674 +/- 84 nmol x min-1 x g-1, while pyruvate decreased from 230 +/- 9 to 6.2 +/- 0.4 nmol x min-1 x g-1, after 20 min of perfusion with 10 mM ethanol. Nevertheless, the flux through 6-phosphofructo-1-kinase, as measured by both the accumulation of sn-glycerol 3-phosphate and release of lactate + pyruvate, was not affected in the early phase of ethanol oxidation. Finally, data obtained from oxygen consumption, the release of acetate and the accumulation of sn-glycerol 3-phosphate do not support the involvement of the microsomal ethanol-oxidizing system in the catalysis of ethanol oxidation, even at high doses of alcohol.  相似文献   

16.
17.
The presence of a soluble, truncated form of the IGF-II/Man-6-P receptor in serum has suggested that cleavage from the cell surface may be an initial step in the degradation of this protein (MacDonald, R. G., Tepper, M. A., Clairmont, K. B., Perregaux, S. B., and Czech, M. P. (1989) J. Biol. Chem. 264, 3256-3261). In order to test this hypothesis, we pulse-labeled cultured BRL-3A rat liver cells with [35S]methionine and [35S]cysteine and measured the fate of labeled receptor at various times after incubation with unlabeled amino acids. It was found that the appearance of labeled IGF-II/Man-6-P receptor in the medium accounts quantitatively for the loss of labeled receptor from the BRL-3A cells. In similar experiments with Chinese hamster ovary cells, L6 rat myoblasts, and chick embryo fibroblasts, labeled receptor from the cell membranes decreases with a time course corresponding to the appearance of soluble receptor in the medium. The release of labeled receptor into the medium can be blocked by the addition of the protease inhibitors aprotinin, chymostatin, or phenylmethylsulfonyl fluoride, but not antipain, leupeptin, and benzamidine. The results are consistent with the hypothesis that the degradation and loss of cellular IGF-II/Man-6-P receptors occurs by a nonlysosomal mechanism involving their proteolysis and removal into the extracellular fluid.  相似文献   

18.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

19.
The ability of lithium to interfere with phosphoinositide metabolism in rat cerebral cortex slices has been examined by monitoring the accumulation of CMP-phosphatidate (CMP-PtdOH) and the reduction in Ins(1,4,5)P3 and Ins(1,3,4,5)P4 levels. A small accumulation of [14C]CMP-PtdOH was seen in slices prelabelled with [14C]cytidine and stimulated with carbachol (1 mM) or Li+ (1 mM). However, simultaneous addition of both agents for 30 min produced a 22-fold accumulation, with Li+ producing a half-maximal effect at a concentration of 0.61 +/- 0.19 mM. Kinetic studies revealed that the effects of carbachol and Li+ on CMP-PtdOH accumulation occurred with no initial lag apparent under these conditions and that preincubation with myo-inositol (10 or 30 mM) dramatically attenuated CMP-PtdOH accumulation. myo-Inositol could also attenuate the rate of accumulation of CMP-PtdOH when added 20 min after carbachol and Li+; these effects were not observed when equimolar concentrations of scyllo-inositol were added. Use of specific radioreceptor assays allowed the mass accumulations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 to be monitored. Following a lag of 5-10 min, Li+ resulted in a marked reduction in the accumulation of both inositol polyphosphates resulting from muscarinic-cholinergic stimulation. Preincubation of cerebral cortex slices with myo- (but not scyllo-) inositol delayed, but did not prevent, the reduction in the accumulation of Ins(1,4,5)P3 or Ins(1,3,4,5)P4. The results suggest that cerebral cortex, at least in vitro, is very sensitive to myo-inositol depletion under conditions of muscarinic receptor stimulation. The relationship of such depletion to the generation of inositol polyphosphate second messengers is discussed.  相似文献   

20.
Oxidative decarboxylation and transamination of 1-14C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso[1-14C]valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and [1-14C]KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM [1-14C]KIV and alpha-ketoiso[1-14C]caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using [1-14C]leucine and [1-14C]valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of [1-14C]leucine or [1-14C]valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized. Further addition of alpha-ketoglutarate resulted in a significant increase in the rate of labeled leucine or valine transamination, but again most of the labeled keto acid product was oxidized. Thus, catabolism of branched chain amino acids will be favored by a high concentration of mitochondrial alpha-ketoglutarate and low intramitochondrial glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号