首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Diabetes is associated with impaired cardiovascular responses that are especially prominent in females. Since nitric oxide (NO)-mediated effects on cardiovascular dynamics are altered in diabetes, we evaluated the effect of L-NAME, a nitric oxide synthase (NOS) antagonist, on mean arterial pressure (MAP), heart rate (HR), and selective vascular flows in both male and female normal and diabetic rats as an index of NO activity. Rats were made diabetic using streptozotocin and maintained for 5-6 weeks. Following anesthesia with urethane/alpha-chloralose, the femoral artery and vein were cannulated for recording and sampling, and flow probes were placed on the iliac, renal, and superior mesenteric arteries. A bolus infusion of L-NAME (10mg/ kg) resulted in a rapid +52% and +68% increase in MAP in normal female and male rats, respectively. However, diabetic females' and males' responses were significantly lower (44% and 45%, respectively) when compared with their normal counterparts. The decreased HR in response to the peak pressor effect of L-NAME was more prominent in normal females compared with normal males (-14% vs 2%). The results in diabetic females and males were equivalent (-6% vs -9%, respectively). L-NAME decreased the conductance (flow/MAP) an average of 65% in all three vascular beds in normal female rats. In diabetic females, the iliac and superior mesenteric responses to L-NAME were less, and the renal conductance was contrastingly increased 23%. The response to L-NAME was comparable (-62%) in the renal and superior mesenteric and less (-40%) in the iliacs of normal versus diabetic males. We concluded that diabetes is associated with a decreased pressor response to NOS inhibition. And the impaired constriction response of the renal vessels noted in female diabetic rats may provide a basis for the increased renal pathology observed in diabetic humans.  相似文献   

2.
Reductions in blood pressure after acute exercise by hypertensive rats   总被引:2,自引:0,他引:2  
Postexercise reductions in blood pressure at rest have been reported for hypertensive subjects. To determine whether post-exercise hypotension would occur in spontaneously hypertensive rats and to test the hypothesis that any reductions would result because of decreases in regional vascular resistances, hypertensive rats (n = 19) were instrumented with indwelling arterial catheters and Doppler probes to measure regional blood flows from the iliac, superior mesenteric, and renal arteries. Data were collected from animals who performed a 20- and a 40-min treadmill test at between 60 and 70% of their maximum O2 uptake. When the animals ran for 20 min, there was a pre- to postexercise drop in mean arterial pressure (MAP) from 158 +/- 3.6 to 150 +/- 3.6 mmHg (P less than 0.05), which was recorded 30 min after the exercise had ceased. The pre- to postexercise reduction in MAP after 40 min of treadmill running was from 154 +/- 3.1 to 138 +/- 3.0 mmHg (P less than 0.05) as recorded 30 min postexercise. Postexercise heart rate was significantly lower after the 40-min exercise bout, from a preexercise mean of 351 +/- 3 beats/min to 324 +/- 5 beats/min 30 min after the treadmill had stopped. Surprisingly, marked pre- to postexercise reductions in regional vascular resistance were not observed in either the iliac, superior mesenteric, or renal vascular beds. These data demonstrated the existence of postexercise hypotension in genetic hypertensive rats and suggested that reductions in cardiac output were the primary hemodynamic mechanism for this finding.  相似文献   

3.
The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.  相似文献   

4.
We tested the hypothesis that dynamic exercise resets the operating point and attenuates the spontaneous gain of the arterial baroreflex regulation of mesenteric and hindlimb vascular conductance in hypertensive rats. Eleven adult male spontaneously hypertensive rats were chronically instrumented with left carotid arterial catheters and Doppler ultrasonic flow probes around the superior mesenteric and left common iliac arteries. After the rats recovered, arterial baroreflex function was examined by recording reflex changes in conductance in response to spontaneous changes in mean arterial pressure before exercise and during steady-state treadmill running at 6 and 18 m/min. Dynamic exercise reduced the spontaneous baroreflex gain of mesenteric conductance (by 51 and 36%) and maximum mesenteric conductance (by 24 and 32%) at 6 and 18 m/min, respectively. In sharp contrast, dynamic exercise increased the spontaneous maximum iliac conductance (by 32 and 47%) without changing the spontaneous gain. Sinoaortic denervation eliminated the relationship between mean arterial pressure and conductance by reducing the mesenteric (92%) and iliac (68%) vascular conductance gain. These results demonstrate that dynamic exercise has differential effects on the regulation of mesenteric and iliac vascular conductance in hypertensive rats.  相似文献   

5.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

6.
To investigate the sequence and nature of the peripheral vascular responses during the prodromal period of heat stroke, rats were implanted with Doppler flow probes on the superior mesenteric (SMA), left iliac (LIA) or left renal (LRA), and external caudal (ECA) arteries. Studies were performed in unanesthetized rats (n = 6) exposed to 46 degrees C and in chloralose-anesthetized animals (n = 11) at 40 degrees C. Core (Tc) and tail-skin temperatures, heart rate, and mean arterial blood pressure (MAP) were also monitored. In both groups, prolonged (70-150 min) exposure progressively elevated Tc from 37.0 to 44.0 degrees C. MAP rose to a plateau then fell precipitously as Tc exceeded 41.5 degrees C. SMA resistance increased throughout the early stages of heating, with a sharp decline from this elevated level 10-15 min before the precipitous fall in MAP. ECA resistance fell initially but increased in the terminal stage of heating. In unanesthetized animals, LIA resistance progressively declined. In chloralose-anesthetized animals LRA resistance rose progressively, then increased markedly as Tc exceeded 41.5 degrees C. These data support the hypothesis that a selective loss of compensatory splanchnic vasoconstriction may trigger the cascade of events that characterize heat stroke. This differential vascular response was similar in both unanesthetized and anesthetized animals.  相似文献   

7.
VIP was given intravenously over 1 min at the doses 0.1 and 0.2 micrograms X kg X min-1 to twenty-one anesthetized patients undergoing abdominal surgery. Intra-arterial blood pressure was monitored and various blood flows were measured simultaneously by electromagnetic technique. Following VIP, intra-arterial blood pressure was decreased. The blood flows were increased in the gastroduodenal-, and the left gastric arteries. The flow in the hepatic artery proper was increased only following the 0.2 micrograms dose. The flow in the superior mesenteric artery varied considerably inter-individually. In branches supplying only the small intestine, it seemed to be unaffected. The flow in the splenic artery was decreased in normal-sized spleens, but unaffected in enlarged spleens. The flow in the external iliac artery initially decreased and thereafter increased. Changes in vascular resistances showed that VIP acted as a vasodilator in the splanchnic region except in the superior mesenteric vasculature, where it was ineffective. In normal spleens it was a vasoconstrictor. In the external iliac artery, an initial insignificant vasoconstriction was followed by vasodilation. It seemed that VIP acts directly on the vessels and has a specific pattern of vasoactivity of probable physiological significance.  相似文献   

8.
Skin-surface cooling elicits a pronounced systemic pressor response, which has previously been reported to be associated with peripheral vasoconstriction and may not fully account for the decrease in systemic vascular conductance. To test the hypothesis that whole body skin-surface cooling would also induce renal and splanchnic vasoconstriction, 14 supine subjects performed 26 skin-surface cooling trials (15-18 degrees C water perfused through a tube-lined suit for 20 min). Oral and mean skin temperature, heart rate, stroke volume (Doppler ultrasound), mean arterial blood pressure (MAP), cutaneous blood velocity (laser-Doppler), and mean blood velocity of the brachial, celiac, renal, and superior mesenteric arteries (Doppler ultrasound) were measured during normothermia and skin-surface cooling. Cardiac output (heart rate x stroke volume) and indexes of vascular conductance (flux or blood velocity/MAP) were calculated. Skin-surface cooling increased MAP (n = 26; 78 +/- 5 to 88 +/- 5 mmHg; mean +/- SD) and decreased mean skin temperature (n = 26; 33.7 +/- 0.7 to 27.5 +/- 1.2 degrees C) and cutaneous (n = 12; 0.93 +/- 0.68 to 0.36 +/- 0.20 flux/mmHg), brachial (n = 10; 32 +/- 15 to 20 +/- 12), celiac (n = 8; 85 +/- 22 to 73 +/- 22 cm.s(-1).mmHg(-1)), superior mesenteric (n = 8; 55 +/- 16 to 48 +/- 10 cm.s(-1).mmHg(-1)), and renal (n = 8; 74 +/- 26 to 64 +/- 20 cm.s(-1).mmHg(-1); all P < 0.05) vascular conductance, without altering oral temperature, cardiac output, heart rate, or stroke volume. These data identify decreases in vascular conductance of skin and of brachial, celiac, superior mesenteric, and renal arteries. Thus it appears that vasoconstriction in both peripheral and visceral arteries contributes importantly to the pressor response produced during skin-surface cooling in humans.  相似文献   

9.
The effects of intracerebroventricular (icv) administration of a corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical CRF, on systemic and regional hemodynamic adjustments to exercise were studied in conscious rats. On consecutive days, rats received saline icv, alpha-helical CRF icv, and no treatment 30 min before treadmill exercise (TMX). Increases in heart rate (HR) and mean arterial pressure (MAP) in response to TMX (16.1-28.6 m/min) were similar after icv administration of saline or no treatment. In rats receiving saline icv or no treatment, estimated vascular resistance increased in the mesenteric and renal regions and declined in the iliac (hindlimb) region. After icv administration of alpha-helical CRF9-41, HR and MAP responses during TMX were significantly attenuated. In addition, TMX-induced elevations of estimated mesenteric vascular resistance and iliac blood flow velocity were blunted after CRF receptor blockade. These altered cardiovascular and hemodynamic responses were ultimately reflected in the animals' compromised ability to run. The results suggest that the central nervous system actions of endogenous CRF are necessary for the full expression of the cardiovascular adjustments to TMX in the conscious rat.  相似文献   

10.
Rao SP  Conley A  Dunbar JC 《Peptides》2003,24(5):745-754
The response to centrally administered beta-endorphin has been characterized by decreasing sympathetic nervous activity and decreased cardiovascular tone. We investigated the effect of the central administration of both mu and kappa opioid receptor agonist and antagonists on cardiovascular responses. The administration of the mu agonist, DAMGO (0.2nmol) increased the mean arterial pressure (MAP) and stimulated iliac vasoconstriction while higher doses (2 and 20nmol) decreased MAP and stimulated iliac vasodilation. The administration of the kappa receptor agonist, Dynorphin decreased the MAP and stimulated superior mesenteric vasodilation. beta-Funaltrexamine reduced MAP and superior mesenteric vasodilation while nor-binaltorphimine increased MAP and iliac and superior mesenteric vasoconstriction. We conclude that mu receptor activation decrease or increase MAP depending on the mu agonist concentration. However, kappa receptor activation is consistently associated with a decrease in MAP.  相似文献   

11.
The purpose of this study was to determine the actions of several pharmacological agents on the circulatory system, and more specifically on the superior mesenteric vascular bed, in response to environmental heat stress in chloralose-anesthetized rats. Animals were instrumented with Doppler flow probes on the mesenteric and renal arteries and exposed to an ambient temperature of 40 degrees C. Heart rate, mean arterial blood pressure (MAP), and core (Tc) and tail skin temperatures were also monitored. As Tc progressively increased from 37 degrees C during heat exposure, MAP rose to a plateau and then fell precipitously as Tc exceeded 41.5 degrees C. Mesenteric resistance increased throughout the early stages of heating before sharply declining prior to the reduction in MAP. The pressor and mesenteric resistance responses to constant infusions of several adrenergic agonists after MAP began falling (Tc = 41.3 degrees C) were significantly (P less than 0.05) attenuated compared with infusions into normothermic animals. In a second set of experiments, injections of both norepinephrine and angiotensin II were made 30 min before and approximately 10, 30, 50, 70, and 90 min after initiation of heating. These injections increased both MAP and mesenteric resistance; however, at TcS greater than 40 degrees C, the responses to both agonists were progressively and significantly attenuated. In a final group of animals, barium chloride infusions produced similar pressor and regional resistance changes during both normothermia and severe hyperthermia (Tc greater than 42 degrees C). These results indicate that, in the chloralose-anesthetized rat, hyperthermia disrupts adrenoceptor function but does not alter the intrinsic ability of vascular smooth muscle to contract.  相似文献   

12.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

13.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

14.
To investigate the regional hemodynamic responses of abdominal arteries at the onset of exercise and to focus on their transient responses, eight female subjects (21-30 yr) performed ergometer cycling exercise at 40 W for 4 min in a semi-supine position. Mean blood velocities (MBVs) in the right renal (RA), superior mesenteric (SMA), and splenic (SA) arteries were measured by pulsed echo-Doppler ultrasonography, with beat-by-beat measurements of heart rate (HR) and mean arterial pressure (MAP). The vascular resistance index (RI) of each artery was calculated from MBV/MAP. MAP (76 +/- 9 to 83 +/- 8 mmHg at 4 min) and HR (60 +/- 7 to 101 +/- 9 beats/min at 4 min) increased during exercise (P < 0.05). The MBV of RA and SA rapidly decreased after the onset of exercise (30 s; -19 +/- 5% and -19 +/- 12%, respectively), reaching -27 +/- 7% and -27 +/- 15% at the end of exercise (P < 0.05). RI did not change during the initial 30 s of exercise, reflecting a reduction in MAP, and increased toward the end of the exercise (+55 +/- 21% and +59 +/- 39%, respectively). In contrast, both the MBV and RI in the SMA remained constant throughout the exercise. The results indicate that, whereas the responses of renal and splenic vessels changed similarly throughout the protocol, the vascular response of SMA that mainly supplies blood to the intestinal tract was unchanged during exercise. We, therefore, conclude that low-intensity cycling exercise resulted in differential blood flow responses in arteries supplying the abdominal organs.  相似文献   

15.
Previous studies suggest that ANG II-induced hypertension in rats fed a high-salt (HS) diet (ANG II-salt hypertension) has a neurogenic component dependent on an enhanced sympathetic tone to the splanchnic veins and independent from changes in sympathetic nerve activity to the kidney or hind limb. The purpose of this study was to extend these findings and test whether altered autonomic control of splanchnic resistance arteries and the heart also contributes to the neurogenic component. Mean arterial pressure (MAP), heart rate (HR), superior mesenteric artery blood flow, and mesenteric vascular resistance (MVR) were measured during 4 control days, 14 days of ANG II delivered subcutaneously (150 ng·kg(-1)·min(-1)), and 4 days of recovery in conscious rats fed a HS (2% NaCl) or low-salt (LS; 0.1% NaCl) diet. Autonomic effects on MAP, HR, and MVR were assessed by acute ganglionic blockade with hexamethonium (20 mg/kg iv) on day 3 of control, days 1, 3, 5, 7, 10, and 13 of ANG II, and day 4 of recovery. MVR increased during ANG II infusion in HS and LS rats but remained elevated only in HS rats. Additionally, the MVR response to hexamethonium was enhanced on days 10 and 13 of ANG II selectively in HS rats. Compared with LS rats, HR in HS rats was higher during the 2nd wk of ANG II, and its response to hexamethonium was greater on days 7, 10, and 13 of ANG II. These results suggest that ANG II-salt hypertension is associated with delayed changes in autonomic control of splanchnic resistance arteries and the heart.  相似文献   

16.
We examined the impact of early diabetes on the circulating and kidney renin-angiotensin system (RAS) in male and female mRen2.Lewis (mRen2) hypertensive rats. Diabetes (DB) was induced by streptozotocin (STZ; 65 mg/kg) at 11 wk of age for 4 wk without insulin replacement. Systolic blood pressures were not increased in DB males or females compared with controls (CON). Circulating angiotensin-converting enzyme 2 (ACE2) increased ninefold (P < 0.05) in DB females and threefold (P < 0.05) in DB males, but circulating ACE and ANG II were higher in the DB groups. Serum C-reactive protein was elevated in DB females but not DB males, and the vascular responses to acetylcholine and estradiol were attenuated in the DB females. Proteinuria, albuminuria, and angiotensinogen excretion increased to a similar extent in both DB females and males. Glomerular VEGF expression also increased to a similar extent in both DB groups. Renal inflammation (CD68(+)cells) increased only in DB females although males exhibited greater inflammation that was not different with DB. Cortical ACE2 did not change in DB females but was reduced (30%) in DB males. Renal neprilysin activity (>75%, P < 0.05) was markedly reduced in the DB females to that in the DB and CON males. ACE activity was significantly lower in both female (75%, P < 0.05) and male (50%; P < 0.05) DB groups, while cortical ANG II and Ang-(1-7) levels were unchanged. In conclusion, female mRen2 rats are not protected from vascular damage, renal inflammation, and kidney injury in early STZ-induced diabetes despite a marked increase in circulating ACE2 and significantly reduced ACE within the kidney.  相似文献   

17.
区域性血管床对局部注射胍丁胺的不同反应   总被引:1,自引:0,他引:1  
Li Q  Fan ZZ  Wang YH  He RR 《生理学报》2001,53(6):451-455
在66只麻醉大鼠,分别采用后肢、肾脏和肠系膜动脉在体恒流灌注法,观察了向灌注环路中直接注射胍丁胺(agmatine,AGM)的血管效应,以所引起的灌流压增减反映血管的收缩和舒张。所得结果如下:(1)不同剂量的AGM(0.1、0.5、1mg/kg)注射于股部灌注环路时,可剂量依赖性地增高后肢血管的灌流压。无论预先注射咪唑啉受体(imidazoline receptor,IR)和α2-肾上腺素能受体阻断剂(α2-adrenergic receptor,α2-AR)idazoxan(0.5mg/kg)或注射α2-肾上腺素能受体阻断剂yohimbine(1mg/kg)均可完全阻抑上述AGM的效应。(2)向肾血管灌注环路中直接注射AGM也可剂量依赖性地增高肾血管的灌流压,需特别指出的是:大剂量AGM(1mg/mg)引起肾血管双相的灌注压增高,此效应可被idazoxan完全阻断。而在预先应用yohimbine后,再注射AGM则引起肾血管灌流压降低。(3)在肠系膜血管灌流环路中注射AGM可剂量依赖性地降低其灌流压。此效应可被idazoxan(0.5mg/kg)完全阻断,而yohimbine(1mg/kg)对此无作用。根据上述结果得出的结论是,AGM对后肢、肾脏和肠系膜血管床的血管紧张性具有不同的作用。  相似文献   

18.
19.
Calcitonin gene-related peptide (CGRP) is a potent vasodilator neuropeptide known to be involved in the regulation of vascular resistance. Several lines of evidence suggest that CGRP plays a role in the vascular adaptations that occur during normal pregnancy; however, the effects of exogenous CGRP on systemic and regional hemodynamics during pregnancy remain unknown. Therefore, the purpose of this study was to determine the hemodynamic effects of systemically administered CGRP in adult pregnant (Day 19) and ovariectomized (ovx) rats using the radioactive microsphere technique. In addition, we also used ovariectomized rats treated for 3 days with estradiol (E2), progesterone (P4), E2 + P4 in sesame oil, or oil only to assess if these hormones regulate the CGRP-induced hemodynamic changes. On the day of study, catheters were inserted into the left cardiac ventricle (through the right carotid artery), right jugular vein, and caudal tail artery. Hemodynamic studies using radioactive microspheres were then performed in conscious rats 3 h after recovery from anesthesia. Blood pressure and heart rate were continuously monitored, and left ventricular pressure was determined immediately prior to each microsphere injection. Microspheres labeled with either (141)Ce or (85)Sr were injected prior to and 2 min following the i.v. bolus injection of CGRP (270 pmol/kg body weight [BW]). Mean arterial pressure (MAP) and total vascular resistance in pregnant rats was lower than in ovx rats, and this was further decreased with an i.v. bolus injection of 270 pmol CGRP/kg BW. Cardiac output was elevated with further increases upon CGRP administration in pregnant but not in ovx rats. The CGRP-induced changes in MAP, total vascular resistance, and cardiac output in E2 + P4 -treated rats were similar to that observed in Day 19 pregnant rats, indicating that CGRP effects on these parameters during pregnancy may be modulated by steroid hormones. Both pregnancy and E2 + P4 treatment in ovx rats caused significant decreases in CGRP-induced resistance in mesenteric, coronary, and renal vasculature. Thus, the vasodilatory sensitivity to CGRP during pregnancy may be mediated through decreased total vascular resistance, particularly to coronary, mesenteric, and renal vascular beds. Thus, CGRP-induced vasodilatory effects may play a role in mediating vascular adaptations that occur during pregnancy and that steroid hormones may modulate these CGRP effects.  相似文献   

20.
Cholecystokinin (CCK) is a potential mediator of gastrointestinal vasodilatation during digestion. To determine whether CCK influences sympathetic vasomotor function, we examined the effect of systemic CCK administration on mean arterial blood pressure (MAP), heart rate (HR), lumbar sympathetic nerve discharge (LSND), splanchnic sympathetic nerve discharge (SSND), and the discharge of presympathetic neurons of the rostral ventrolateral medulla (RVLM) in alpha-chloralose-anesthetized rats. CCK (1-8 microg/kg iv) reduced MAP, HR, and SSND and transiently increased LSND. Vagotomy abolished the effects of CCK on MAP and SSND as did the CCK-A receptor antagonist devazepide (0.5 mg/kg iv). The bradycardic effect of CCK was unaltered by vagotomy but abolished by devazepide. CCK increased superior mesenteric arterial conductance but did not alter iliac conductance. CCK inhibited a subpopulation (approximately 49%) of RVLM presympathetic neurons whereas approximately 28% of neurons tested were activated by CCK. The effects of CCK on RVLM neuronal discharge were blocked by devazepide. RVLM neurons inhibited by exogenous CCK acting via CCK-A receptors on vagal afferents may control sympathetic vasomotor outflow to the gastrointestinal tract vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号