首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Intestinal absorption offolates has been characterized as a facilitative process with a low pHoptimum. Studies with intestinal epithelial cells have suggested thatthis activity is mediated by the reduced folate carrier (RFC1). In thispaper, we report on folate transport characteristics in an immortalizedrat IEC-6 cell line that was found to exhibit the predominant influxactivity for methotrexate (MTX) at pH 5.5 with a low level of activity at pH 7.4. Transfection of this cell line with an RFC1 construct resulted in clones exhibiting increased MTX uptake at both the pHs andhigh folic acid uptake only at the low pH. For the two clones with thehighest level of transport activity, relative MTX influx at the two pHswas reversed. Moreover, the low pH MTX influx activity([MTX]e = 0.5 µM) was markedly inhibited by 20 µM folic acid while influx at neutral pH was not. Furthermore, in thepresence and absence of glucose at low pH, MTX and folic acid influxactivity was inhibited by azide, while MTX influx at pH 7.4 wasstimulated by azide in the absence of glucose but was unchanged in thepresence of glucose and azide. This was contrasted with the results oftransfection of the same RFC1 construct into an L1210 murine leukemiacell line bearing a nonfunctional endogenous carrier. In this case, theactivity expressed was only at pH 7.4. These data indicate that RFC1can exhibit two distinct types of folate transport activities inintestinal cells that must depend on tissue-specific modulators.

  相似文献   

2.
The aim of this work was to test the putative involvement of members of the ABC superfamily of transporters on folic acid (FA) cellular homeostasis in the human placenta. [(3)H]FA uptake and efflux in BeWo cells were unaffected or hardly affected by multidrug resistance 1 (MDR1) inhibition (with verapamil), multidrug resistance protein (MRP) inhibition (with probenecid) or breast cancer resistance protein (BCRP) inhibition (with fumitremorgin C). However, [(3)H]FA uptake and efflux were inhibited by progesterone (200 microM). An inhibitory effect of progesterone upon [(3)H]FA uptake and efflux was also observed in human cytotrophoblasts. Moreover, verapamil and ss-estradiol also reduced [(3)H]FA efflux in these cells. Inhibition of [(3)H]FA uptake in BeWo cells by progesterone seemed to be very specific since other tested steroids (beta-estradiol, corticosterone, testosterone, aldosterone, estrone and pregnanediol) were devoid of effect. However, efflux was also inhibited by beta-estradiol and corticosterone and stimulated by estrone. Moreover, the effect of progesterone upon the uptake of [(3)H]FA by BeWo cells was concentration-dependent (IC(50 )= 65 [range 9-448] microM) and seems to involve competitive inhibition. Also, progesterone (1-400 microM) did not affect either [(3)H]FA uptake or efflux at an external acidic pH. Finally, inhibition of [(3)H]FA uptake by progesterone was unaffected by either 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid (SITS), a known inhibitor of the reduced folate carrier (RFC), or an anti-RFC antibody. These results suggest that progesterone inhibits RFC. In conclusion, our results show that progesterone, a sterol produced by the placenta, inhibits both FA uptake and efflux in BeWo cells and primary cultured human trophoblasts.  相似文献   

3.
We investigated the existence of an endogenous uptake system for folate in Xenopus laevis oocytes. This was done by performing uptake measurements using [3H]folic acid. Uptake of folic acid was linear with time for 4 h of incubation, and was similar in collagenase-treated and non-treated oocytes. The uptake process was carrier-mediated, as suggested by the saturation of folic acid uptake with concentration, and by the ability of unlabelled folic acid and its related compounds to significantly inhibit the uptake of [3H]folic acid. The apparent Km and Vmax of the uptake process were 42 +/- 7 nM and 10.56 +/- 0.46 fmol per oocyte per 2 h, respectively. The uptake of folic acid was independent of the presence of Na+ in the incubation medium, but was highly pH dependent with severe inhibition occurring at pH lower than 6.5. Folic acid uptake was energy- and temperature-dependent, and was significantly inhibited by the anion transport inhibitors DIDS and SITS. These results demonstrate the existence of an endogenous carrier-mediated system for folic acid uptake in Xenopus oocytes. Further characterization of the molecular mechanism of folic acid uptake and its regulation in this non mammalian in vitro unicellular system may prove useful in furthering our understanding of folate movement across biological membranes.  相似文献   

4.
We recently identified a cDNA clone frommouse small intestine, which appears to be involved in folate transportwhen expressed in Xenopus oocytes. Theopen reading frame of this clone is identical to that of the reducedfolate carrier (RFC) (K. H. Dixon, B. C. Lanpher, J. Chiu, K. Kelley,and K. H. Cowan. J. Biol. Chem. 269: 17-20,1994). The characteristics of this cDNA clone [previously referred toas intestinal folate carrier 1 (IFC-1)] expressed inXenopus oocytes, however, were foundto be different from the characteristics of folate transport in nativesmall intestinal epithelial cells. To further study these differences,we determined the characteristics of RFC when expressed in anintestinal epithelial cell line, IEC-6, and compared the findings toits characteristics when expressed inXenopus oocytes. RFC was stablytransfected into IEC-6 cells by electroporation; its cRNA wasmicroinjected into Xenopus oocytes.Northern blot analysis of poly(A)+RNA from IEC-6 cells stably transfected with RFC cDNA (IEC-6/RFC) showed a twofold increase in RFC mRNA levels over controls. Similarly, uptake of folic acid and 5-methyltetrahydrofolate (5-MTHF) by IEC-6/RFCwas found to be fourfold higher than uptake in control sublines. Thisincrease in folic acid and 5-MTHF uptake was inhibited by treatingIEC-6/RFC cells with cholesterol-modified antisense DNAoligonucleotides. The increase in uptake was found to be mainly mediated through an increase in the maximal velocity(Vmax) of theuptake process [the apparent Michaelis-Menten constant(Km) alsochanged (range was 0.31 to 1.56 µM), but no specific trend wasseen]. In both IEC-6/RFC and control sublines, the uptake of bothfolic acid and 5-MTHF displayed 1)pH dependency, with a higher uptake at acidic pH 5.5 compared with pH7.5, and 2) inhibition to the sameextent by both reduced and oxidized folate derivatives. Thesecharacteristics are very similar to those seen in native intestinalepithelial cells. In contrast, RFC expressed inXenopus oocytes showed1) higher uptake at neutral andalkaline pH 7.5 compared with acidic pH 5.5 and2) higher sensitivity to reducedcompared with oxidized folate derivatives. Results of these studiesdemonstrate that the characteristics of RFC vary depending on the cellsystem in which it is expressed. Furthermore, the results may suggestthe involvement of cell- or tissue-specific posttranslationalmodification(s) and/or the existence of an auxiliary proteinthat may account for the differences in the characteristics of theintestinal RFC when expressed inXenopus oocytes compared with whenexpressed in intestinal epithelial cells.

  相似文献   

5.
Li T  Tomimatsu T  Ito K  Horie T 《Life sciences》2003,73(20):2631-2639
The transport characteristics of fluorescein-methotrexate (F-MTX) in isolated brush border membrane vesicles (BBMVs) from rat small intestine were studied. F-MTX uptake in BBMVs was measured by a rapid filtration technique. Our results demonstrated that F-MTX uptake into vesicles was 1) significantly increased under the experimental conditions of an outwardly directed OH(-) gradient or an inwardly directed H(+)gradient, 2) sensitive to temperature, 3) increased with decreasing pH of the incubation buffer, 4) significantly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) at the early stage of the uptake, and 5) significantly inhibited by methotrexate (MTX). Thus, the transport of F-MTX in BBMVs was shown to be mediated in part by the reduced folate transporter (RFC) which was known to transport MTX through the epithelium of small intestine.  相似文献   

6.
The aim of this study was to elucidate the mechanism of folate transport in the placenta. A study of folate was carried out to determine which carriers transport folates in the human choriocarcinoma cell line BeWo, a model cell line for the placenta. We investigated the effects of buffer pH and various compounds on folate uptake. In the first part of the study, the expression levels of the mRNA of the folate receptor alpha (FRalpha), the reduced folate carrier (RFC), and heme carrier protein 1 (HCP1) were determined in BeWo cells by RT-PCR analysis. Folate uptake into BeWo cells was greater under an acidic buffer condition than under a neutral one. Structure analogs of folates inhibited folate uptake under all buffer pH conditions, but anion drugs (e.g., pravastatin) inhibited folate uptake only under an acidic buffer condition. Although thiamine pyrophosphate (TPP), a substrate of RFC, had no effect on folate uptake, hemin (a weak inhibitor of folate uptake via HCP1) decreased folate uptake to about 80% of the control level under an acidic buffer condition. Furthermore, kinetic analysis showed that hemin inhibited the low-affinity phase of folate uptake under an acidic buffer condition. We conclude that pH-dependent folate uptake in BeWo cells is mediated by at least two carriers. RFC is not involved in folate uptake, but FRalpha (high affinity phase) and HCP1 (low affinity phase) transport folate in BeWo cells.  相似文献   

7.
Role of reduced folate carrier in intestinal folate uptake   总被引:3,自引:0,他引:3  
Studies from our laboratory and others have characterized different aspects of the intestinal folate uptake process and have shown that the reduced folate carrier (RFC) is expressed in the gut and plays a role in the uptake process. Little, however, is known about the actual contribution of the RFC system toward total folate uptake by the enterocytes. Addressing this issue in RFC knockout mice is not possible due to the embryonic lethality of the model. In this study, we describe the use of the new approach of lentivirus-mediated short hairpin RNA (shRNA) to selectively silence the endogenous RFC of the rat-derived intestinal epithelial cells (IEC-6), an established in vitro model for folate uptake, and examined the effect of such silencing on folate uptake. First we confirmed that the initial rate of [(3)H]folic acid uptake by IEC-6 cells was pH dependent with a markedly higher uptake at acidic compared with alkaline pH. We also showed that the addition of unlabeled folic acid to the incubation buffer leads to a severe inhibition ( approximately 95%) in [(3)H]folic acid (16 nM) uptake at buffer pH 5.5 but not at buffer pH 7.4. We then examined the effect of treating (for 72 h) IEC-6 cells with RFC-specific shRNA on the levels of RFC protein and mRNA and observed substantial reduction in the levels of both parameters ( approximately 80 and 78%, respectively). Such a treatment was also found to lead to a severe inhibition ( approximately 90%) in initial rate of folate uptake at buffer pH 5.5 (but not at pH 7.4); uptake of the unrelated vitamin, biotin, on the other hand, was not affected by such a treatment. These results demonstrate that the RFC system is the major (if not the only) folate uptake system that is functional in intestinal epithelial cells.  相似文献   

8.
Methotrexate (MTX) is used not only for the cancer chemotherapy but also for the treatment of rheumatic disease, often together with non-steroidal anti-inflammatory drugs (NSAIDs). MTX is actively cotransported with H(+) in the small intestine, mediated by a reduced folate carrier (RFC). The coadministration of some NSAIDs with MTX to rats caused a decrease of MTX absorption through the small intestine. This may be due to the uncoupling effect of oxidative phosphorylation of the NSAIDs. The present study investigated whether flufenamic acid, diclofenac and indomethacin, NSAIDs, decreased ATP content of rat-derived intestinal epithelial cell line IEC-6 cells and affected the MTX transport in IEC-6 cells. The MTX uptake in IEC-6 cells was dependent on medium pH and maximum around pH 4.5-5.5. The MTX uptake was composed of a transport inhibited by 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and a non-saturable one. The DIDS-sensitive component in the MTX uptake showed a saturation kinetics (Michaelis-Menten constant (Km): 3.91 +/- 0.52 microM, Maximum velocity (Vmax): 94.66 +/- 6.56 pmol/mg protein/5 min). The cellular ATP content in IEC-6 cells decreased significantly at 30 min after the cells were started to incubate with the NSAIDs (250 microM flufenamic acid, 500 microM diclofenac and 500 microM indomethacin). The MTX uptake in IEC-6 cells in the presence of the NSAIDs decreased with the reduction of cellular ATP content and showed a good correlation with the ATP content (correlation coefficient: 0.982). Thus it seems likely that the ATP content in IEC-6 cells with the NSAIDs decreased due to the uncoupling effect of oxidative phosphorylation of the NSAIDs, resulting in the inhibition of the secondary active transport of MTX in IEC-6 cells. The present results also suggest that IEC-6 cells are useful to evaluate the drug interaction relating to this carrier system.  相似文献   

9.
Folic acid (FA) is a vitamin that acts as a coenzyme in the biosynthesis of purine and pyrimidine precursors of nucleic acids, which are critically important during pregnancy. Our group has previously shown that both reduced folate carrier (RFC1) and folate receptor alpha (FRalpha) seem to be involved in the uptake of [3H]folic acid ([3H]FA) by a human trophoblast cell line (BeWo) and by human primary cultured cytotrophoblasts. Our aim was to study the interaction between FA and some nutrients/bioactive substances. For this, we tested the acute and chronic effects of some dietary compounds on [3H]FA apical uptake and on the expression of both RFC1 and FRalpha mRNA in BeWo cells. Our results show that [3H]FA uptake was significantly reduced by acute exposure to epicatechin, isoxanthohumol (1-400 microM) or theophylline (0.1-100 microM); isoxanthohumol seemed to act as a competitive inhibitor, whereas epicatechin and theophylline caused an increase in both Km and Vmax. On the other hand, [3H]FA uptake was significantly increased by chronic exposure to xanthohumol, quercetin or isoxanthohumol (0.1-10 microM), and this increase does not seem to result from changes in the level of RFC1 or FRalpha gene expression. Moreover, [3H]FA uptake was significantly reduced by chronic exposure to ethanol (0.01%). This reduction seems to be, at least in part, due to a reduction in FRalpha expression. These results are compatible with an association between a deficient FA supply to the placenta/fetus and ethanol toxicity in pregnancy.  相似文献   

10.
The mechanism of exit of folate from the enterocyte, i.e. transport across the basolateral membrane, is not known. In this study we examined, using basolateral membrane vesicles, the transport of folic acid across the basolateral membrane of rat intestine. Uptake of folic acid by these vesicles represents transport of the substrate into the intravesicular compartment and not binding to the membrane surface. The rate of folic acid transport was linear for the first 1 min of incubation but decreased thereafter, reaching equilibrium after 5 min of incubation. The transport of folic acid was: (1) saturable as a function of concentration with an apparent Km of 0.6 +/- 0.17 microM and Vmax. of 1.01 +/- 0.11 pmol/30 s per mg of protein; (2) inhibited in a competitive manner by the structural analogues 5-methyltetrahydrofolate and methotrexate (Ki = 2 and 1.4 microM, respectively); (4) electroneutral; (5) Na+-independent; (6) sensitive to the effect of the anion exchange inhibitor 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS). These data indicate the existence of a carrier-mediated transport system for folic acid in rat intestinal basolateral membrane and demonstrate that the transport process is electroneutral, Na+-independent and sensitive to the effect of anion exchange inhibition.  相似文献   

11.
A systematic study was made of the action of 4-acet-amido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer 45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS, Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

12.
We studied the effects of two disulphonic stilbenes, 4',4'-diisothiocyano-2,2'-stilbene disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyano-2,2'-stilbene disulphonic acid (SITS), on Ca2+ transport by plasma membrane vesicles from the circular muscle of the dog stomach. Both compounds inhibited ATP-dependent Ca2+ uptake and reduce the leak from loaded vesicles. The inhibition produced could not be significantly reduced by either permeant anions or by increasing the level of free Ca2+. The effects of DIDS could be rendered irreversible by incubating the membranes with this agent at 37 degrees C.  相似文献   

13.
Acidification of endocytic vesicles by an ATP-dependent proton pump   总被引:23,自引:10,他引:13       下载免费PDF全文
One of the early events in the pathway of receptor-mediated endocytosis is the acidification of the newly formed endocytic vesicle. To examine the mechanism of acidification, we used fluorescein-labeled alpha 2- macroglobulin (F-alpha 2M) as a probe for endocytic vesicle pH. Changes in pH were determined from the change in fluorescein fluorescence at 490-nm excitation as measured with a microscope spectrofluorometer. After endocytosis of F-alpha 2M, mouse fibroblast cells were permeabilized by brief exposure to the detergent digitonin. Treatment with the ionophore monensin or the protonophore carbonyl cyanide p- trifluoromethoxyphenylhydrazone (FCCP) caused a rapid increase in the pH of the endocytic vesicle. Upon removal of the ionophore, the endocytic vesicle rapidly acidified only when MgATP or MgGTP was added. Neither ADP nor the nonhydrolyzable analog, adenosine 5'-(beta, gamma- imido)triphosphate (AMP-PNP) could support acidification. The ATP- dependent acidification did not require a specific cation or anion in the external media. Acidification was insensitive to vanadate and amiloride but was inhibited by Zn2+ and the anion transport inhibitor diisothiocyanostilbene disulfonic acid (DIDS). We also examined the acidification of lysosomes with the permeabilized cell system, using fluorescein isothiocyanate dextran as probe. DIDS inhibited the ATP- dependent reacidification of lysosomes, although at a lower concentration than that for inhibition of endocytic vesicle reacidification. These results demonstrate that endocytic vesicles contain an ATP-dependent acidification mechanism that shares similar characteristics with the previously described lysosomal proton pump.  相似文献   

14.
Intestinal folate transport has been well characterized, and rat small intestinal epithelial (IEC-6) cells have been used as a model system for the study of this process on the cellular level. The major intestinal folate transport activity has a low-pH optimum, and the current paradigm is that this process is mediated by the reduced folate carrier (RFC), despite the fact that this carrier has a neutral pH optimum in leukemia cells. The current study addressed the question of whether constitutive low-pH folate transport activity in IEC-6 cells is mediated by RFC. Two independent IEC-6 sublines, IEC-6/A4 and IEC-6/PT1, were generated by chemical mutagenesis followed by selective pressure with antifolates. In IEC-6/A4 cells, a premature stop resulted in truncation of RFC at Gln420. A green fluorescent protein (GFP) fusion with the truncated protein was not stable. In IEC-6/PT1 cells, Ser135 was deleted, and this alteration resulted in the failure of localization of the GFP fusion protein in the plasma membrane. In both cell lines, methotrexate (MTX) influx at neutral pH was markedly decreased compared with wild-type IEC-6 cells, but MTX influx at pH 5.5 was not depressed. Transient transfection of the GFP-mutated RFC constructs into RFC-null HeLa cells confirmed their lack of transport function. These results indicate that in IEC-6 cells, folate transport at neutral pH is mediated predominantly by RFC; however, the folate transport activity at pH 5.5 is RFC independent. Hence, constitutive folate transport activity with a low-pH optimum in this intestinal cell model is mediated by a process entirely distinct from that of RFC. folic acid; folate absorption; methotrexate  相似文献   

15.
Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes   总被引:1,自引:0,他引:1  
Dipeptide transport was studied in chicken enterocytes and its properties compared with those of Na+-dependent sugar transport. Results showed that 1) isolated cells were capable of accumulating glycylsarcosine (Gly-Sar) against a concentration gradient (2.5- to 3.0-fold accumulation). This uptake was maximal at pH 6.0, and it was inhibited by Na+-free medium and by ouabain; 2) uptake of Gly-Sar was not affected by methionine and was competitively inhibited by carnosine, with a Ki of 12 mM; 3) the protonophore FCCP inhibited both Gly-Sar and 3-oxy-methyl-D-glucose (3-OMG) uptake by the cells; 4) amiloride, a well-known inhibitor of the Na+/H+ exchanger system stimulated 3-OMG uptake and inhibited Gly-Sar uptake, its effects being greater at pH 7.4; 5) and monensin prevents the effects of amiloride on both sugar and dipeptide uptake. In summary, Gly-Sar uptake depends on extracellular Na+ in an indirect manner via its effect on H+ efflux, and it appears to be dependent on an inward H+ gradient.  相似文献   

16.
Narawa T  Shimizu R  Takano S  Tsuda Y  Ono K  Yamada H  Itoh T 《Chirality》2005,17(8):444-449
Stereoselectivity of the human reduced folate carrier (RFC1) was examined in Caco-2 cells using methotrexate (l-amethopterin or l-MTX) and its antipode (d-amethopterin or d-MTX) as model substrates. The initial uptake rate of folic acid (FA) was concentration dependent, with a K(m) value of approximately 0.6 microM. The Eadie-Hofstee plot of the RFC1-mediated FA uptake revealed a single component for FA uptake into Caco-2 cells, demonstrating that only RFC1 is involved in FA uptake. l-MTX inhibited FA uptake in a competitive manner with a K(i) value of approximately 2 microM, similar to the K(m) value of l-MTX. d-MTX also competitively inhibited FA uptake with a K(i) value being approximately 120 microM, indicating that the affinity of d-MTX is ca. 60-fold less than that of l-MTX. The stereoselectivity of human RFC1 observed in the present study was consistent not only with the stereoselectivity of rabbit RFC1 observed in rabbit intestinal brush border membrane vesicles but also with the reported differences in oral absorption of amethopterin enantiomers in humans.  相似文献   

17.
C P Chen  C Wagner 《Life sciences》1975,16(10):1571-1581
The uptake of 5-methyltetrahydrofolic acid (5-MTHF) by the isolated choroid plexus of hog was studied and shown to be both temperature and time dependent. Uptake of 5-MTHF by the isolated choroid plexus was a saturable process and exhibited a Kt of 0.9 × 10−6M and Vmax of 1.39 nmole/gm dry wt/min. The system did not require the presence of sodium ion nor was it ouabain sensitive. The presence of metabolic inhibitors, e.g., 2,4-dinitrophenol, did not suppress the uptake rate. Deprivation of oxygen also did not affect the rate of 5-MTHF transport. Addition of folic acid to the incubating medium led to countertransport of intracellular 5-MTHF. Efflux studies also indicated that the majority of the intracellular 5-MTHF was rapidly exchangeable and therefore probably present in the cell water in a free state. Chromatographic analyses confirmed that 5-MTHF was not metabolically altered during the transport process. It is suggested that 5-methyltetrahydrofolic acid is transported in the isolated choroid plexus via a carrier-mediated process.  相似文献   

18.
Effects of stilbene disulfonates on single KATP channel currents were investigated in inside-out and outside-out membrane patches from guinea pig ventricular myocytes. All drugs tested, 4,4′-diisothiocyanatostilbene, 2,2′-disulfonic acid (DIDS), 4-acetamido0-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS), and 4,4′-diaminostilbene-2,2′-disulfonic acid (DADS), inhibited the KATP channel when they were applied to the intracellular, but not extracellular side of the membrane patch. Inhibitory actions of DIDS and SITS were irreversible, whereas those induced by DNDS and DADS were reversible. KATP channel inhibition was concentration dependent with an order of potency of DIDS>SITS ≈ DNDS > DADS; the Hill coefficient was close to unity for each drug. No change in channel conductance was observed during exposure to DIDS or DNDS; however, channel kinetics was altered. Distribution of the open time within bursts and that between bursts could be described by a single exponential relation in the absence and presence of DIDS or DNDS. The time constant of the open time within bursts was not altered, but that between bursts was decreased by DIDS (from 40.0±8.1 to 29.8±6.7 msec, P< 0.05) and by DNDS (from 43.1±9.3 to 31.9±7.1 msec, P<0.05). Distributions of closed time within bursts were also fitted to a single exponential function both in the absence and presence of drugs, while those of the closed time between bursts were fitted to a single exponential function in the absence of drugs, but a double exponential function was required in the presence of drugs. The rates of onset and development of channel inhibition by DIDS and DNDS appeared to be concentration dependent; a longer time was required to reach a new steady-state of channel activity as drug concentration was decreased. Inhibition by DIDS or DNDS was regulated by intracellular pH; inhibition was greater during acidic conditions. For DIDS (0.1 mm), the open probability (P o) expressed as a fraction of the value before drug application was 42.9±8.3% at pH 7.4 and 8.2±6.6% at pH 6.5 (P<0.01); corresponding values for DNDS (1 mm) were 39.6±17.6 and 8.9 ±5.8%, respectively (P<0.01). From these data, we conclude that stilbene disulfonates block the KATP channel by binding to their target site with one-to-one stoichiometry. Similar to glibenclamide, the binding of stilbene disulfonates may reflect interpolation in an “intermediate lipid compartment” between the cytosolic drug and the site of drug action.  相似文献   

19.
The role of anions in the maintenance of tension in electrically driven left atria isolated from guinea pigs has been examined. The disulfonic stilbene anion-channel blockers SITS (4-acetamido-4'-isothiocyanostilbene 2'-disulfonate) and DIDS (4,4'-diisothiocyano-2,2'-stilbene disulfonate) decreased the contractile force developed in a time- and concentration-dependent manner. As in the red cell anion channel, DIDS was more potent than SITS, but the maximal inhibition of tension produced by N-(4-azido-2-nitrophenyl)-2-aminoethyl sulfonate (NAP-taurine) was considerably lower than the near maximal inhibition produced by SITS and DIDS. The inhibition by SITS and DIDS was irreversible, suggesting a covalent interaction, and could not be overcome by increasing the calcium concentration or the frequency of stimulation. Consistent with a requirement for chloride anion, substitution of chloride and bicarbonate by the impermeant anion gluconate did not support contraction, while only partial tension was maintained with the lipophilic anions acetate and thiocyanate. Incubation of atria with 400 microM SITS blocked both 36Cl and 45Ca uptake to a similar extent, whereas the efflux of both these ions was not affected by incubation of the atria with SITS. The blockade by disulfonic stilbene anion-channel blockers of the contraction of the guinea pig myocardium may result from impairment of excitation-contraction coupling.  相似文献   

20.
Uptake of methotrexate into the LNCaP human prostate cancer cells was linear for the first 60 min. The initial rate of methotrexate uptake was highest at extracellular pH 4.5 and decreased markedly until pH 7.0 to 8.0. Transport of methotrexate into LNCaP cells showed two components, one saturable -K(m) = 0.13 +/- 0.06 microM and V(max) = 1.20 +/- 0.16 pmol x 45 min(-1) x mg(-1) protein at low concentrations and the other apparently not saturable up to 10 microM. Uptake of methotrexate was inhibited by structural analogs with the K(i) values being 6.53, 12.4, and 85.6 microM for 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, and folic acid, respectively. Uptake of methotrexate into LNCaP cells was not inhibited by the energy poisons in contrast to methotrexate uptake into PC-3 prostate cancer cells. Uptake was inhibited by increasing concentrations of sulfate and phosphate ions and by the organic anions probenecid and DIDS, suggesting that methotrexate may be transported by an anion-exchange mechanism. These results show that methotrexate is transported into LNCaP prostate cancer cells by a carrier-mediated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号