首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. Our results show that although Diaptomid species differ in their reproductive traits, they also differ in other morphological traits that might indicate ecological differences among species and populations.  相似文献   

2.
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.  相似文献   

3.
《Journal of morphology》2017,278(4):475-485
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso‐ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non‐invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso‐ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark‐based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra , despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475–485, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

4.

Dam constructions cause fundamental changes in the natural landscape, creating new ecological and evolutionary challenges for aquatic organisms. In some cases, such water impoundments have been related with morphological changes in organisms. Understanding how populations respond to rapid environmental changes imposed by dams is the first step to elucidate the consequences that disturbed habitats may have on species evolution. In this work, we analyzed shape and size variation in Bryconamericus iheringii Boulenger 1887 from the Chasqueiro stream basin, south of Brazil, which was recently dammed. We used linear measurements and geometric morphometrics to identify morphological differences among specimens from the reservoir (lentic habitat) compared to the habitat upstream and downstream of the dam (lotic habitats). We also tested for size- and shape-related sexual dimorphism to determine whether variations observed were the same for both sexes. We found that B. iheringii from the artificial reservoir were distinct in shape and size to those from their natural habitat in the stream. The size variation between environments was the same for both sexes, but the shape variation differed between males and females. Regarding the linear measurements, lotic populations were larger (greater body length, width, pectoral fin base length and caudal peduncle length), probably in response to increased swimming activity. Regarding body shape, we found that both sexes have a more fusiform body in lotic habitats than in the reservoir. In addition, females showed an altered mouth position that was distinct between these environments. This work indicates that the water reservoir seems to be an important factor influencing morphological variation in B. iheringii, a species with sexual shape dimorphism.

  相似文献   

5.
Bilateral symmetry is widespread in animal kingdom, however most animal can deviate from expected symmetry and manifest some kind of asymmetries. Fluctuating asymmetry is considered as a tool for valuating developmental instability, whereas directional asymmetry is inherited and could be used for evaluating evolutionary development. We use the method of geometric morphometrics to analyze left/right asymmetries in the whole body, in two sites and totally six populations of Ceroglossus chilensis with the aim to infer and explain morphological disparities between populations and sexes in this species. In all individuals analyzed we found both fluctuating asymmetry and directional asymmetry for size and shape variation components, and a high sexual dimorphism. Moreover a high morphological variability between the two sites emerged as well. Differences in diet could influence the expression of morphological variation and simultaneously affect body sides, and therefore contribute to the symmetric component of variation. Moreover differences emerged between two sites could be a consequence of isolation and fragmentation, rather than a response to local environmental differences between sampling sites.  相似文献   

6.
Scaphinotus petersi Roeschke, 1907 (Carabidae) is a ground beetle endemic to Sky Islands in south‐eastern Arizona. Previous taxonomic studies described several subspecies with morphological differences inhabiting geographically isolated mountain ranges. We combined molecular sequence data and morphometric data, especially head and pronotum shape analyses, to examine the variation and divergence in subspecies and isolated montane populations. In this study, we employ a combination of distance morphometrics as well as geometric morphometrics to quantify the level of morphological variation, and to test the hypothesis that geographically distinct populations of S. petersi are phenotypically distinct. Results suggest that these isolated populations have diverged morphologically and genetically. Phylogenetic analyses identified two monophyletic lineages within the species that correspond generally to pronotum shape. We observed significant morphological variation among most montane populations in of S. petersi, with the pronotum shape as the clearest delimiting trait. © 2015 The Linnean Society of London  相似文献   

7.
Evolution of adaptation through allometric shifts in a marine snail   总被引:1,自引:0,他引:1  
Variation in ontogenetic development among individuals may be a major contributor to morphological variation within species. Evolution of different growth trajectories might, for example, evolve as a response to varying ecological contexts of individuals living in different environments, or by life-stage or gender differences. The intertidal periwinkle Littorina saxatilis is strongly polymorphic in shell shape. We compared ontogenetic trajectories between life stages, local populations, and sexes to understand how different morphological end points are reached during ontogeny and what might cause these differences. Applying landmark-based geometric morphometrics, we captured shell shape variation for four Swedish populations of this species. We also derived a method to visualize ontogenetic trajectories described by the relationship of size to the multivariate shape space. We found that growth trajectories differed between individuals living in different habitats, as well as between sexes and maturity stages. Males living on rocky cliffs grew isometrically throughout life, whereas females from the same habitat switched from isometric growth as juveniles to allometric growth as adults. In contrast, males and females living on boulders grew allometrically as juveniles but changed to isometric growth at sexual maturity. Thus, in this species, ontogenetic growth seems influenced by habitat-associated selection as well as by gender and age-specific selection. These differing selection regimes result in ontogenetic shifts in allometry in three of the four groups examined.  相似文献   

8.
This study examined the patterns of morphological variation both between species, and between sexes and among populations within each species of the Mexican sailfin mollies, Poecilia velifera and Poecilia petenensis , using geometric morphometrics and linear measurements of morphological traits. While sexes within each species differed in characteristics that may be important in sexual selection, such as length of the dorsal fin, species differed in traits, such as body depth, that may also be influenced by natural selection due to differences in habitats. Within each species, many morphological traits were similar among populations, but important differences, including caudal peduncle depth in P. petenensis (but not in P. velifera ), suggested that habitat differences may also be important in shaping population divergence independently within each species. Indeed, the evolutionary vectors of male morphological population divergence for each species differed by an angle of 98·5°, representing nearly orthogonal vectors and suggesting independent shape divergence between these two molly species. Finally, geographic isolation did not explain the morphological differentiation seen among populations, suggesting that natural and sexual selection were strong forces promoting morphological diversification within these two species, despite the potential for a high degree of population connectivity and gene flow.  相似文献   

9.
The sclerotized attachment organ of monogeneans has been widely used to address fundamental questions in ecology and evolution. However, traditional morphometric techniques appear to be partially inadequate and non-optimal. Traditional linear measurements mainly provide information on the size of sclerites but provide very little information, if any, on their shape. The shape of sclerites is indeed virtually unexplored and its implication for ecological and evolutionary processes remains to be analyzed. This study aims to both introduce and illustrate the use of geometric morphometrics in order to study sclerites of monogeneans in a biogeographic context. To do this, we investigated morphological variation patterns among four populations from the Pacific Ocean and six monogenean species through traditional and geometric morphometric techniques. Unlike the traditional method, the geometric morphometric method yielded a high percentage of individuals correctly classified to the four populations, providing strong evidence for phenotypic variability, divergence and local adaptation among islands without evolutionary constraint. Moreover, the traditional method also resulted in inconsistent interpretations of shape variations. This study highlighted the limitations that may arise when using traditional morphometric techniques and emphasizes that considerable information about the shape of sclerotized haptoral parts is added by using geometric morphometrics. Given the prominent taxonomic, ecological and evolutionary role of the haptor for characterizing monogeneans, we ultimately discuss the potential broad use of geometric morphometrics in a wide variety of ecological and evolutionary contexts. This powerful approach might allow a more robust estimation of the extent to which traditional evolutionary theories based on size of sclerites are congruent with their shape.  相似文献   

10.
Podarcis bocagei and P. carbonelli are two closely related lacertid species, very similar morphologically and ecologically. We investigated sexual dimorphism patterns presented by both species in allopatry and in sympatry. Sexual size and shape dimorphism patterns were analyzed using both multivariate and geometric morphometric techniques. Multivariate morphometrics revealed a marked sexual dimorphism in both species--males being larger with more robust habitus and females presenting a longer trunk. General patterns of sexual size dimorphism are not modified in sympatry, although there is evidence for some morphological change in male head size. The application of geometric morphometrics offered a more detailed image of head shape and revealed that males present a more developed tympanic area than do females, while females have a more rounded head. Differences in the degree of sexual shape dimorphism were detected in sympatry, but no consistent patterns were observed. From the results of the study, and based on previous knowledge on the populations studied, we conclude that the morphological differences observed are probably not caused by exploitative competition between the species, but rather appear attributable to the modification of the relative influence of sexual and natural selection on both sexes.  相似文献   

11.
Abstract.  Complexes of sibling and cryptic species are encountered frequently in parasitic Hymenoptera. Geometric morphometrics is a useful tool to detect minimal morphological variations, which often are undetectable by traditional morphological studies and even by classical morphometric approaches. We applied geometric morphometrics to wing venation to assess a complex case of sibling species in the genus Eubazus (Hymenoptera, Braconidae), parasitoids of conifer bark weevils of the genus Pissodes (Coleoptera, Curculionidae). The results and methods were compared with previous taxonomic studies on the same species, involving classical multivariate morphometrics, isoenzyme analyses, cross-mating experiments and biological observations. Geometric morphometrics confirmed the previous division into four distinct species. However, this approach enabled the four species to be separated simultaneously, with a reliability of 98.6% for well-classified females and 93.1% for males. A similar result in previous studies was obtained only by combining isoenzyme analyses and several canonical variate analyses, including many morphometric characters. Furthermore, measurements of wing venation were less time-consuming, more reliable and required less prior knowledge of braconid taxonomy than the measurements needed for the classical morphometrics methods. Geometric morphometrics was used also to test the effect of host species on wing shape. Several female populations of Eubazus semirugosus originating from three different Pissodes spp. were compared. Significant differences were found in wing shape between conspecific Eubazus from different host species. The results are discussed in relation to reproductive isolation and genetic flow between the four species.  相似文献   

12.
13.
Geographic variation of morphology is an important topic of evolutionary biology, and research on geographic variation can provide insights on the formation, evolution, and adaptation of species and subspecies. The vertebrate skull is a developmentally and functionally complex morphological structure with multiple functions, that is susceptible to vary according to selection pressure. In this study, geographic variations in skull morphology of Batrachuperus karlschmidti from four different geographic populations(Shade, Gexi,Shangluokema, and Xinduqiao) were examined via geometric morphometrics. No significant differences were found among these populations with regard to skull size; however, significant variation was found in skull shape. The most notable shape changes are the relative sizes and positions of the frontal, maxilla,pterygoid, and vomer. Skull shape changes were not related to allometry. However, due to limitation of sample populations and size, the results of this study need to be further verified by more sample populations and individuals in the future. The results of this study contribute to our knowledge about these aspects of morphological variability in this species as well as in hynobiid salamanders.  相似文献   

14.
Non-geographic morphometric variation, particularly at the level of sexual dimorphism and ontogenetic (age-related) variation, has been documented in rodents, and useful for establishing whether to analyse sexes separately or together, and for selecting adult specimens for subsequent data recording and analysis. However, such studies have largely been based on traditional morphometric analyses of linear measurements that mainly focus on overall size, rather than shape-related morphometric variation. Unit-free, landmark/outline-based geometric morphometric analyses are considered to offer a more appropriate tool for assessing shape-related morphometric variation. In this study, we used geometric cranial morphometric analysis to assess the nature and extent of sexual dimorphism and age variation within the Tete veld rat, Aethomys ineptus (Thomas and Wroughton, 1908) from southern Africa and the African Nile rat, Arvicanthis niloticus (Desmarest, 1822) from Sudan. The results obtained were in turn compared with previously published results based on independent geometric and traditional cranial morphometric data from the same sampled populations examined in the present study. While our geometric morphometric results detected statistically significant sexual dimorphism in cranial shape within Ar. niloticus only, previously published results based on traditional morphometric data failed to detect significant sexual dimorphism within this species. However, similar to previously published traditional morphometric data, our geometric morphometric results detected statistically significant age-related variation in cranial shape and size within both Ae. ineptus and Ar. niloticus, with individuals of age classes 5 and 6 being considered to represent adult specimens. Our results highlight the importance of carefully evaluating both size- and shape-related non-geographic morphometric variation prior to the analysis of geographic variation and the delineation of species. Erroneous conclusions of non-geographic variation may have implications in the interpretation of geographic and evolutionary processes that may be responsible for morphological differences at both the inter- and intra-specific levels.  相似文献   

15.
Predation can cause morphological divergence among populations, while ontogeny and sex often determine much of morphological diversity among individuals. We used geometric morphometrics to characterize body shape in the livebearing fish Brachyrhaphis rhabdophora to test for interactions between these three major shape-determining factors. We assessed shape variation between juveniles and adults of both sexes, and among adults for populations from high- and low-predation areas. Shape differed significantly between predation regimes for all juveniles regardless of sex. As males grew and matured into adults, ontogenetic shape trajectories were parallel, thus maintaining shape differences in adult males between predation environments. However, shape of adult females between predation environments followed a different pattern. As females grew and matured, ontogenetic shape trajectories converged so that shape differences were less pronounced between mature females in predator and nonpredator environments. Convergence in female body shape may indicate a trade-off between optimal shape for predator evasion versus shape required for the livebearing mode of reproduction.  相似文献   

16.
The cranial morphology of 28 specimens of night monkeys (genus Aotus) was examined using three-dimensional geometrical morphometrics. New results of the morphological differences between two populations of Aotus infulatus from both banks of the Rio Tocantins are proposed. These morphological results totally agree with the genetic distinction of these populations proposed by Schneider -- and Sampaio --, and probably point out recent rapid evolutive changes for this species. Our morphometric results can be used for taxonomic, but also for medical research, as the susceptibility to malaria of night monkeys is variable between species.  相似文献   

17.
18.
The genetic structure and morphometric differentiation of mangrove crab Perisesarma guttatum populations were examined among shelf connected locations along a latitudinal gradient on the East African coast. Over 2200 specimens were sampled from 23 mangrove sites for geometric morphometrics analysis. Population genetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences were used to evaluate connectivity among populations. A total of 73 haplotypes were detected, and almost no haplotypes were found in common between two highly supported phylogeographic clades: southern Mozambique (Inhaca Island and Maputo Bay) and a northern clade that included north Mozambique, Tanzania and Kenya. These two clades were identified based on the species' populations pairwise genetic differentiation and geographical location. ΦST values were considerably high between the two clades, indicating the presence of significant population genetic structure between Kenya and South Mozambique. However, each clade was composed of genetically similar populations along the latitudinal gradient, and no significant population structure was found within each clade because the Φst values were not significant. The morphometric analysis corroborated the division into two clades (i.e. Inhaca Island/Maputo Bay and northern populations) and also detected less shape variation among populations that were few kilometres apart. The significant spatial genetic structuring between the southern and the northern populations of P. guttatum along the geographic gradient under study, combined with morphological differences, suggests that these populations may be considered as cryptic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 28–46.  相似文献   

19.
Temporal bone shape has been shown to reflect molecular phylogenetic relationships among hominoids and offers significant morphological detail for distinguishing taxa. Although it is generally accepted that temporal bone shape, like other aspects of morphology, has an underlying genetic component, the relative influence of genetic and environmental factors is unclear. To determine the impact of genetic differentiation and environmental variation on temporal bone morphology, we used three-dimensional geometric morphometric techniques to evaluate temporal bone variation in 11 modern human populations. Population differences were investigated by discriminant function analysis, and the strength of the relationships between morphology, neutral molecular distance, geographic distribution, and environmental variables were assessed by matrix correlation comparisons. Significant differences were found in temporal bone shape among all populations, and classification rates using cross-validation were relatively high. Comparisons of morphological distances to molecular distances based on short tandem repeats (STRs) revealed a significant correlation between temporal bone shape and neutral molecular distance among Old World populations, but not when Native Americans were included. Further analyses suggested a similar pattern for morphological variation and geographic distribution. No significant correlations were found between temporal bone shape and environmental variables: temperature, annual rainfall, latitude, or altitude. Significant correlations were found between temporal bone size and both temperature and latitude, presumably reflecting Bergmann's rule. Thus, temporal bone morphology appears to partially follow an isolation by distance model of evolution among human populations, although levels of correlation show that a substantial component of variation is unexplained by factors considered here.  相似文献   

20.
Morphological variation among natural populations is a phenomenon commonly observed in marine invertebrates and well studied, particularly, in shelled gastropods. The nassariid Buccinanops globulosus is interesting to study shell shape variation because it exhibits strong interpopulation differences in life history features, including maximum size, fecundity and growth rate. In this study, we examined the pattern of variation in size and shell shape among populations and between sexes of B. globulosus (Bahía San Antonio 40°29′S 63°01′W, Playa Villarino 40°45′S 64°40′W and Bahía Nueva 42°46′S 65°02′W). In particular, we used geometric morphometric techniques to test: (1) whether the two components of shell morphology (size and shape) are independent and (2) whether shape differences between sexes are consistently found among populations, regardless of their body sizes. Our results show shell shape variation between the populations of B. globulosus of northern Patagonia. Intra-specific shell shape variation is affected by body size, indicating allometry. Regardless of the size differences, individuals from Playa Villarino have high-spired shells, and shorter apertures and wider columellar area than individuals from the other populations. Also, sex-related shape differences were consistently found at each population, thus suggesting a common sexual dimorphism in shell morphology for this species. The functional significance of the variability found is discussed in terms of the flexibility of developmental programmes for morphology as well as the evolution of phenotypic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号