首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have obtained biochemical and electron microscopic evidence of conformational changes at pH 8.0 and 37 degrees C in the coronavirus spike glycoprotein E2 (S). The importance of these changes is reflected in the loss of virus infectivity, the aggregation of virions, and increased virus-induced cell fusion at the same pH. Coronavirus (MHV-A59) infectivity is exquisitely sensitive to pH. The virus was quite stable at pH 6.0 and 37 degrees C (half-life, approximately 24 h) but was rapidly and irreversibly inactivated by brief treatment at pH 8.0 and 37 degrees C (half-life, approximately 30 min). Virions treated at pH 8.0 and 37 degrees C formed clumps and large aggregates. With virions treated at pH 8.0 and 37 degrees C, the amino-terminal peptide E2N (or S1) was released from virions and the remaining peptide, E2C (S2), was aggregated. Viral spikes isolated from detergent-treated virions also aggregated at pH 8.0 and 37 degrees C. Loss of virus infectivity and E2 (S) aggregation at pH 8.0 and 37 degrees C were markedly enhanced in the presence of dithiothreitol. On the basis of the effects of dithiothreitol on the reactions of the peplomer, we propose that release of E2N (S1) and aggregation of E2C (S2) may be triggered by rearrangement of intramolecular disulfide bonds. The aggregation of virions and the isolated E2 (S) glycoprotein at pH 8.0 and 37 degrees C or following treatment with guanidine and urea at pH 6.0 and 37 degrees C indicate that an irreversible conformational change has been induced in the peplomer glycoprotein by these conditions. It is interesting that coronavirus-induced cell fusion also occurred under mildly alkaline conditions and at 37 degrees C. Some enveloped viruses, including influenza viruses and alphaviruses, show conformational changes of spike glycoproteins at a low pH, which correlates with fusion and penetration of those viruses in acidified endocytic vesicles. For coronavirus MHV-A59, comparable conformational change of the spike glycoprotein E2 (S) and cell fusion occurred at a mildly alkaline condition, suggesting that coronavirus infection-penetration, like that of paramyxoviruses and lentiviruses, may occur at the plasma membrane, rather than within endocytic vesicles.  相似文献   

2.
The spike glycoprotein (S) of the murine coronavirus mouse hepatitis virus (MHV) binds to viral murine CEACAM receptor glycoproteins and causes membrane fusion. On virions, the 180-kDa S glycoprotein of the MHV-A59 strain can be cleaved by trypsin to form the 90-kDa N-terminal receptor-binding subunit (S1) and the 90-kDa membrane-anchored fusion subunit (S2). Incubation of virions with purified, soluble CEACAM1a receptor proteins at 37 degrees C and pH 6.5 neutralizes virus infectivity (B. D. Zelus, D. R. Wessner, R. K. Williams, M. N. Pensiero, F. T. Phibbs, M. deSouza, G. S. Dveksler, and K. V. Holmes, J. Virol. 72:7237-7244, 1998). We used liposome flotation and protease sensitivity assays to investigate the mechanism of receptor-induced, temperature-dependent virus neutralization. After incubation with soluble receptor at 37 degrees C and pH 6.5, virions became hydrophobic and bound to liposomes. Receptor binding induced a profound, apparently irreversible conformational change in S on the viral envelope that allowed S2, but not S1, to be degraded by trypsin at 4 degrees C. Various murine CEACAM proteins triggered conformational changes in S on recombinant MHV strains expressing S glycoproteins of MHV-A59 or MHV-4 (MHV-JHM) with the same specificities as seen for virus neutralization and virus-receptor activities. Increased hydrophobicity of virions and conformational change in S2 of MHV-A59 could also be induced by incubating virions at pH 8 and 37 degrees C, without soluble receptor. Surprisingly, the S protein of recombinant MHV-A59 virions with a mutation, H716D, that precluded cleavage between S1 and S2 could also be triggered to undergo a conformational change at 37 degrees C by soluble receptor at neutral pH or by pH 8 alone. A novel 120-kDa subunit was formed following incubation of the receptor-triggered S(A59)H716D virions with trypsin at 4 degrees C. The data show that unlike class 1 fusion glycoproteins of other enveloped viruses, the murine coronavirus S protein can be triggered to a membrane-binding conformation at 37 degrees C either by soluble receptor at neutral pH or by alkaline pH alone, without requiring previous activation by cleavage between S1 and S2.  相似文献   

3.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

4.
Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane V(o) and catalytic V(1) sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 degrees C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 degrees C. Corresponding to the reversible defect of the hybrid V-ATPase, the V(o) subunit a epitope was exposed to the corresponding antibody at 37 degrees C, but became inaccessible at 30 degrees C. However, the V(1) sector was still associated with V(o) at 37 degrees C, as shown immunochemically. The control yeast V-ATPase was active at 37 degrees C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V(1) from V(o) in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) entry requires conformational changes in the transmembrane subunit (gp41) of the envelope glycoprotein (Env) involving transient fusion intermediates that contain exposed coiled-coil (prehairpin) and six-helix bundle structures. We investigated the HIV-1 entry mechanism and the potential of antibodies targeting fusion intermediates to block Env-mediated membrane fusion. Suboptimal temperature (31.5 degrees C) was used to prolong fusion intermediates as monitored by confocal microscopy. After transfer to 37 degrees C, these fusion intermediates progressed to syncytium formation with enhanced kinetics compared with effector-target (E/T) cell mixtures that were incubated only at 37 degrees C. gp41 peptides DP-178, DP-107, and IQN17 blocked fusion more efficiently (5- to 10-fold-lower 50% inhibitory dose values) when added to E/T cells at the suboptimal temperature prior to transfer to 37 degrees C. Rabbit antibodies against peptides modeling the N-heptad repeat or the six-helix bundle of gp41 blocked fusion and viral infection at 37 degrees C only if preincubated with E/T cells at the suboptimal temperature. Similar fusion inhibition was observed with human six-helix bundle-specific monoclonal antibodies. Our data demonstrate that antibodies targeting gp41 fusion intermediates are able to bind to gp41 and arrest fusion. They also indicate that six-helix bundles can form prior to fusion and that the lag time before fusion occurs may include the time needed to accumulate preformed six-helix bundles at the fusion site.  相似文献   

6.
Cell fusion induced by infection with mouse hepatitis virus strain A59 (MHV-A59) varied markedly in extent and time course in four different murine cell lines. When inoculated at a multiplicity of 3 to 5 PFU per cell, the Sac-, L2, and DBT cell lines began to fuse by 7 h, were fused into confluent syncytia by 9 to 12 h, and peeled from the substrate by 10 to 14 h. These virulent virus-cell interactions were in striking contrast to the moderate interaction of MHV-A59 with the 17 Cl 1 cell line, in which only small syncytia were observed 18 h postinoculation, and greater than 50% of the cells remained unfused by 24 h. The yield of infectious virus produced by 17 Cl 1 cells was 10-fold higher than the yields from the other three cell lines. The processing of the nucleocapsid protein, the membrane glycoprotein E1, and the peplomeric glycoprotein E2 were found to differ significantly in the four cell lines. Since the E2 glycoprotein is responsible for virus-induced cell fusion, we attempted to correlate differences in cellular processing of E2 with differences in fusion of infected cells. The predominant intracellular form of E2 in all cell lines was the 180K species. Pulse-chase experiments showed that a small portion of the 17 Cl 1 cell-associated 180K E2 was cleaved by 1 h after synthesis to yield 90K E2, shown in the preceding paper to consist of two different glycoproteins called 90A and 90B (L. S. Sturman, C. S. Ricard, and K. V. Holmes, J. Virol. 56:904-911, 1985). This cleavage occurred shortly before the release of virions from cells, as shown by pulse-chase experiments. After budding at intracellular membranes, virions released into the medium by the four cell lines contained different ratios of 180K to 90K E2. Virions from Sac- cells, which contained 100% 90K E2, fused L2 cells rapidly without requiring virus replication, whereas virions from 17 Cl 1 cells, which had 50% 90K E2, required trypsin activation to induce rapid fusion (Sturman et al., J. Virol. 56:904-911, 1985). The addition of protease inhibitors to the medium markedly delayed L2 cell fusion induced by MHV infection. The extent of coronavirus-induced cell fusion does not depend solely upon the percent cleavage of the E2 glycoprotein by cellular proteases, since extensive fusion was induced by infection of L2 and DBT cells but not 17 Cl 1 cells, although all three cell lines cleaved E2 to the same extent.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The epitopes of the V3 domain of the human immunodeficiency virus type 1 (HIV-1) gp120 glycoprotein have complex structures consisting of linear and conformational antigenic determinants. Anti-V3 antibodies (Abs) recognize both types of elements, but Abs which preferentially react to the conformational aspect of the epitopes may have more potent neutralizing activity against HIV-1, as recently suggested. To test this hypothesis, human anti-V3 monoclonal Abs (MAbs) were selected using a V3 fusion protein (V3-FP) which retains the conformation of the third variable region. The V3-FP consists of the V3(JR-CSF) sequence inserted into a truncated form of murine leukemia virus gp70. Six human MAbs which recognize epitopes at the crown of the V3 loop were selected with the V3-FP. They were found to react more strongly with molecules displaying conformationally intact V3 than with linear V3 peptides. In a virus capture assay, these MAbs showed cross-clade binding to native, intact virions of clades A, B, C, D, and F. No binding was found to isolates from subtype E. The neutralizing activity of MAbs against primary isolates was determined in three assays: the GHOST cell assay, a phytohemagglutinin-stimulated peripheral blood mononuclear cell assay, and a luciferase assay. While these new MAbs displayed various degrees of activity, the pattern of cross-clade neutralization of clades A, B, and F was most pronounced. The neutralization of clades C and D viruses was weak and sporadic, and neutralization of clade E by these MAbs was not detected. Analysis by linear regression showed a highly significant correlation (P < 0.0001) between the strength of binding of these anti-V3 MAbs to intact virions and the percent neutralization. These studies demonstrate that human MAbs to conformation-sensitive epitopes of V3 display cross-clade reactivity in both binding to native, intact virions and neutralization of primary isolates.  相似文献   

8.
《The Journal of cell biology》1983,97(5):1365-1374
An efficient method has been devised to introduce lipid molecules into the plasma membrane of mammalian cells. This method has been applied to fuse lipid vesicles with the apical plasma membrane of Madin-Darby canine kidney cells. The cells were infected with fowl plague or influenza N virus. 4 h after infection, the hemagglutinin (HA) spike glycoprotein of the virus was present in the apical plasma membrane of the cells. Lipid vesicles containing egg phosphatidylcholine, cholesterol, and an HA receptor (ganglioside) were then bound to the cells at 0 degrees C. More than 85% of the vesicles were released by external neuraminidase at 0 degrees C or by simply warming the cells to 37 degrees C for 10 s, probably because of the action of the viral neuraminidase at the cell surface. However, when the cells were warmed to 37 degrees C in a pH 5.3 medium for 30 s, 50% of the bound vesicles could no longer be released by external neuraminidase. This only occurred when the HA protein had been cleaved into its HA1 and HA2 subunits. When we used influenza N virus, whose HA is not cleaved in Madin-Darby canine kidney cells, cleavage with external trypsin was required. The fact that the HA protein has fusogenic properties at low pH only in its cleaved form suggests that fusion of the vesicles with the plasma membrane had taken place. Further confirmation for fusion was obtained using an assay based on the decrease of energy transfer between two fluorescent phospholipids in a vesicle upon fusion of the vesicle with the plasma membrane (Struck, D. K., D. Hoekstra, and R. E. Pagano. 1981. Biochemistry, 20:4093-4099).  相似文献   

9.
Fragments cDNA (nt 935-1475, 1091-1310, 935-1193) encoding N-terminal part of protein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human were obtained and cloned. Recombinant polypeptides of glycoprotein E (E1-86, E53-126, E1-180) of the WNV with corresponding amino acid sequence to the cloned fragments of cDNA and modeling the epitopes of domains I and II of surface glycoprotein E were purified by affinity chromatography. Twelve types of monoclonal antibodies (MAbs) created in our laboratory against recombinant polypeptide E1-180 interact with glycoprotein E of the WNV as results of Western blot and ELISA that is demonstrating an similarity of chemical structure of short recombinant polypeptides and corresponding amino acid sequence regions of WNV protein E. Analysis of interactions of MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus let us reveal no less than six epitopes within domains I and II of glycoprotein E of the WNV. No less than seven types of MAbs to 86-126 aa region of the domain II were found where located peptide providing fusion of virus--cell membranes (98-110 aa). The epitope for anti-receptor MAbs 10H10 within 53-86 aa region of domain II of protein E of the WNV was mapped and it shows that the fusion peptide and co-receptor of protein E for cellular laminin-binding protein (LBP) are spatial nearness. X-ray model of protein E let us suppose that bc-loop (73-89 aa) of domain II interacts with LBP and together with cd-loop (fusion peptide) determines an initial stages of penetration virions into cell.  相似文献   

10.
Sindbis virus glycoproteins E1 and E2 undergo a conformational alteration during early virus-cell interaction at the cell surface (D. Flynn, W. J. Meyer, J. M. MacKenzie, Jr., and R. E. Johnston, J. Virol. 64:3643-3653, 1990). Certain epitopes normally internal on native virus become accessible to monoclonal antibody (MAb) binding after attachment but before internalization of virus particles. These newly exposed epitopes, termed transitional epitopes, may be part of functionally important domains made accessible at the surface of the altered virus to facilitate entry into cells. Heating Sindbis virions at 51 degrees C for a short time induced a similar, although not identical, exposition of transitional epitopes on the E1 and E2 glycoproteins (W. J. Meyer, S. Gidwitz, V. K. Ayers, R. J. Schoepp, and R. E. Johnston, J. Virol. 66:3504-3513, 1992). In the current report, we have identified several of the transitional epitopes that become exposed as a consequence of early virus-cell interactions. Transitional epitope MAbs that bound to rearranged, heated virions and virus-cell complexes were used in antibody competition binding assays on heated Sindbis virions to map the spatial relationships between native, external, neutralizing antigenic sites and newly exposed transitional epitopes. Because the heated, rearranged particles retained their infectivity, MAbs that bound to transitional epitopes also were used to isolate MAb neutralization escape mutants. Sequencing the glycoprotein genes of the escape mutants identified specific E1 and E2 loci where mutation prevented MAb binding to transitional epitopes. One of the transitional epitopes identified (E2 residues 200 to 202) lies in the E2 190-216 region, which harbors two major neutralization sites, E2a and E2b, and an N-linked glycosylation site at E2 196. The glycosylation signal was eliminated by site-directed mutagenesis of a full-length cDNA clone of the Sindbis virus genome. The absence of a carbohydrate moiety did not expose the transitional epitopes mapped to this locus, suggesting that on native virions, the inaccessibility of the E2 200-202 determinant was inherent in the structure of the glycoprotein spike.  相似文献   

11.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

12.
In the murine coronavirus mouse hepatitis virus, a single glycoprotein, E2, is required both for attachment to cells and for cell fusion. Cell fusion induced by infection with mouse hepatitis virus strain A59 was inhibited by the addition of monospecific anti-E2 antibody after virus adsorption and penetration. Adsorption of concentrated coronavirions to uninfected cells did not cause cell fusion in the presence of cycloheximide. Thus, cell fusion was induced by E2 on the plasma membrane of infected 17 Cl 1 cells but not by E2 on virions grown in these cells. Trypsin treatment of virions purified from 17 Cl 1 cells quantitatively cleaved 180K E2 to 90K E2 and activated cell-fusing activity of the virions. This proteolytic cleavage yielded two different 90K species which were separable by sodium dodecyl sulfate-hydroxyapatite chromatography. One of the trypsin cleavage products, 90A, was acylated and may be associated with the lipid bilayer. The other, 90B, was not acylated and yielded different peptides than did 90A upon limited digestion with thermolysin or staphylococcal V8 protease. Thus, the cell-fusing activity of a coronavirus required proteolytic cleavage of the E2 glycoprotein, either by the addition of a protease to virions or by cellular proteases acting on E2, which was transported to the plasma membrane during virus maturation. There is a striking functional similarity between the E2 glycoprotein of coronavirus, which is a positive-strand RNA virus, and the hemagglutinin glycoprotein of negative-strand orthomyxoviruses, in that a single glycoprotein has both attachment and protease-activated cell-fusing activities.  相似文献   

13.
Transthyretin (TTR) subunits were labeled with a charge-modifying tag to evaluate the possibility of subunit exchange between tetramers under physiological conditions. Starting with a mixture of two TTR homotetramers, one having all subunits tagged at the N termini and the other composed of untagged subunits, heterotetramer formation as a function of time and temperature was evaluated using ion exchange chromatography. The data indicate that the subunit exchange can occur under native conditions at physiological pH in vitro, albeit slowly. Wild-type TTR exchanges subunits on a timescale of days at 37 degrees C and on a timescale of hours at 4 degrees C. The familial amyloid polyneuropathy-associated variant V30M exchanges subunits at the same rate as wild-type TTR at 4 degrees C but slower and less efficiently at 37 degrees C. Small molecule tetramer stabilizers abolish TTR subunit exchange, supporting a dissociative mechanism.  相似文献   

14.
The Hantaan virus (HTNV) is an enveloped virus that is capable of inducing low pH-dependent cell fusion. We molecularly cloned the viral glycoprotein (GP) and nucleocapsid (NP) cDNA of HTNV and expressed them in Vero E6 cells under the control of a CMV promoter. The viral gene expression was assessed using an indirect immunofluorescence assay and immunoprecipitation. The transfected Vero E6 cells expressing GPs, but not those expressing NP, fused and formed a syncytium following exposure to a low pH. Monoclonal antibodies (MAbs) against envelope GPs inhibited cell fusion, whereas MAbs against NP did not. We also investigated the N-linked glycosylation of HTNV GPs and its role in cell fusion. The envelope GPs of HTNV are modified by N-linked glycosylation at five sites: four sites on G1 (N134, N235, N347, and N399) and one site on G2 (N928). Site-directed mutagenesis was used to construct eight GP gene mutants, including five single N-glycosylation site mutants and three double-site mutants, which were then expressed in Vero E6 cells. The oligosaccharide chain on residue N928 of G2 was found to be crucial for cell fusion after exposure to a low pH. These results suggest that G2 is likely to be the fusion protein of HTNV.  相似文献   

15.
Monoclonal antibodies (MAbs) have been developed that can recognize epitopes that are unique to either the alpha or beta subunit of the fibronectin receptor (FnR). MAbs 11B4 and 7A8 immunoblot the alpha subunit of FnR either in purified form from Chinese hamster ovary (CHO) cells or in nonionic detergent extracts of cells of human and rodent origin electrophoresed under reducing or nonreducing conditions. The MAbs seem to be more reactive to the subunit when it has been electrophoresed under reducing conditions, suggesting that the epitope may be partially masked by the conformation conferred by disulfide bonding. A second set of MAbs, 7E2 and 7F9, is directed to an epitope on the beta subunit that is conformationally dependent upon disulfide bonding, as reduction of the subunit leads to loss of reactivity with both MAbs. Further, 7E2/7F9 immunoblots of nonionic detergent extracts of CHO cells, run under nonreducing conditions, reveal the presence of a third band (90-kDa), immunologically related to the beta subunit, which is not surface-labeled with 125I in intact cells and which does not copurify with the alpha and beta subunits isolated by immunoaffinity purification of FnR using the MAb PB1. The 90-kDa component is not found associated with a plasma membrane fraction prepared by crude cell fractionation, but is abundant in a low-speed pellet containing nuclei and intracellular membranes. This finding suggests that the 90-kDa component is a precursor to the beta subunit. Finally, the epitope of 7E2/7F9 is unique to CHO cells, as cross-reactivity to other cell types cannot be demonstrated by either immunoblotting or immunoprecipitation.  相似文献   

16.
When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Paulson, F. J. Sigworth, S. M. Sine, and A. Swedlund. 1987. Science (Wash. DC). 238:1688-1694). Experiments here with rat L6 myoblast cell lines indicate that this temperature sensitivity is not specific to fibroblasts, but is intrinsic to Torpedo subunits. A clonal isolate of L6 cells cotransfected with the four Torpedo subunit cDNAs synthesizes the exogenous AChR subunits at 37 degrees and 26 degrees C, but expresses Torpedo AChR complexes only at the lower temperature. When Torpedo alpha alone is expressed in L6 myotubes, hybrid AChRs are formed, again only at temperatures below 37 degrees C. These hybrid AChRs can contain either two Torpedo alpha subunits or one each of rat and Torpedo alpha, proving that the two alpha subunits in an AChR pentamer need not derive from the same polysome. Further analysis of hybrid and all-Torpedo AChR established that there is no internally sequestered pool of AChR at the nonpermissive temperature, and that the AChR, once formed, is thermostable. Two lines of experimentation with alpha subunits expressed in fibroblasts indicate that alpha polypeptides exhibit different conformations at 26 degrees and 37 degrees C, favoring the hypothesis that the temperature-sensitive step occurs before assembly and reflects, at least in part, misfolding of subunits: at 37 degrees C, there is a reduction in the fraction of alpha subunits that (a) bind the AChR antagonist alpha-bungarotoxin with high affinity; and (b) bind a monoclonal antibody that recognizes correctly folded and/or assembled alpha subunit.  相似文献   

17.
Delos SE  White JM 《Journal of virology》2000,74(20):9738-9741
The transmembrane subunit (TM) of the envelope glycoprotein (Env) of the oncovirus avian sarcoma/leukosis virus (ASLV) contains an internal fusion peptide flanked by two cysteines (C9 and C45). These cysteines, as well as an analogous pair in the Ebola virus GP glycoprotein, are predicted to be joined by a disulfide bond. To examine the importance of these cysteines, we mutated C9 and C45 in the ASLV subtype A Env (EnvA), individually and together, to serine. All of the mutant EnvAs formed trimers that were composed of the proteolytically processed surface (SU) and TM subunits. All mutant EnvAs were incorporated into murine leukemia virus pseudotyped virions and bound receptor with wild-type affinity. Nonetheless, all mutant EnvAs were significantly impaired ( approximately 1,000-fold) in their ability to support infectivity. They were also significantly impaired in their ability to mediate cell-cell fusion. Our data are consistent with a model in which the internal fusion peptide of ASLV-A EnvA exists as a loop that is stabilized by a disulfide bond at its base and in which this stabilized loop serves an important function during virus-cell fusion. The fusion peptide of the Ebola virus GP glycoprotein may conform to a similar structure.  相似文献   

18.
19.
B Aroeti  T M Jovin  Y I Henis 《Biochemistry》1990,29(39):9119-9125
The rotational mobility of Sendai virus envelope glycoproteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase) was determined by using erythrosin (ER)-labeled monovalent Fab' antibody fragments directed specifically against either F or HN. By use of time-resolved phosphorescence anisotropy, the rotational mobility of Er-Fab'-viral glycoprotein complexes was studied both in the envelopes of unfused virions bound to erythrocyte ghosts and in the target cell membrane after fusion had occurred. The rotational correlation times (phi) of Er-Fab'-labeled F and HN were rather similar in the envelopes of bound unfused virions, but highly different in membranes of fused cells. The different phi values indicate that F and HN diffuse separately in the target cell membrane and for the major part are not complexed together. The temperature dependence of the phi values of the Er-Fab'-viral glycoprotein complexes revealed a breakpoint at 22 degrees C for the F protein both in bound virions and in the membranes of fused cells, and for the HN proteins in the envelopes of bound virions. In all these cases, the phi values increased between 4 and 22 degrees C, demonstrating a reduction in the rate of rotational diffusion. Further elevation of the temperature reversed the direction of the change in phi. This phenomenon may reflect a temperature-dependent microaggregation of F and HN saturating at ca. 22 degrees C and presumably related to the fusion mechanism since the breakpoint temperature correlates closely with the threshold temperature for virus-cell and cell-cell fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus at 37 degrees C resulted in formation of a complex between one of the viral glycoproteins, E1, and the viral nucleocapsid. This was caused by a temperature-dependent conformational change in E1, resulting in aggregation of E1 and interaction with the viral RNA in the nucleocapsid. E1 also bound rRNA. The E1-nucleocapsid complexes can be distinguished on sucrose and Renografin density gradients from native viral nucleocapsids. The separation of the membrane glycoprotein E1 from the peplomeric glycoprotein E2 permitted preparation of antisera against these isolated proteins. A model is proposed for the arrangement of the three major structural proteins in the coronavirus A59 virion in relation to the viral envelope and RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号