首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies in Saccharomyces cerevisiae have unveiled that meiotic recombination crossovers are formed by two genetically distinct pathways: a major interference-sensitive pathway and a minor interference-insensitive pathway. Several proteins, including the MSH4/MSH5 heterodimer and the MER3 DNA helicase, are indispensable for the interference-sensitive pathway. MSH4 homologs have been identified in mice and Arabidopsis and shown to be required for normal levels of crossovers, suggesting that the function of MSH4 may be conserved among major eukaryotic kingdoms. However, it is not known whether an MER3-like function is also required for meiosis in animals and plants. We have identified an Arabidopsis gene that encodes a putative MER3 homolog and is preferentially expressed in meiocytes. T-DNA insertional mutants of this gene exhibit defects in fertility and meiosis. Detailed cytological studies indicate that the mutants are defective in homolog synapsis and crossover formation, resulting in a reduction of bivalents and in the formation of univalents at late prophase I. We have named this gene ROCK-N-ROLLERS (RCK) to reflect the mutant phenotype of chromosomes undergoing the meiotic 'dance' either in pairs or individually. Our results demonstrate that an MER3-like function is required for meiotic crossover in plants and provide further support for the idea that Arabidopsis, like the budding yeast, possesses both interference-sensitive and insensitive pathways for crossover formation.  相似文献   

2.
Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.  相似文献   

3.
4.
The road to crossovers: plants have their say   总被引:1,自引:0,他引:1  
Crossovers involve the reciprocal exchange of large fragments of genetic material between homologous chromosomes during meiosis. In this way, crossovers are the basis of genetics. Remarkably, the number and distribution of crossovers on chromosomes are closely controlled. Data from various model organisms (notably Saccharomyces cerevisiae) show that the distribution of crossovers results from a series of tightly regulated events involving the formation and repair of double-strand breaks and interference. Recent advances in genetic and cytological tools, particularly for studying Arabidopsis thaliana, have enabled crossover control in plants to be studied in more detail. In this article, we discuss the contribution of plant studies to meiosis research, particularly to our understanding of crossover control and interference, and we evaluate models of interference.  相似文献   

5.
The human hereditary disease Fanconi anemia leads to severe symptoms, including developmental defects and breakdown of the hematopoietic system. It is caused by single mutations in the FANC genes, one of which encodes the DNA translocase FANCM (for Fanconi anemia complementation group M), which is required for the repair of DNA interstrand cross-links to ensure replication progression. We identified a homolog of FANCM in Arabidopsis thaliana that is not directly involved in the repair of DNA lesions but suppresses spontaneous somatic homologous recombination via a RecQ helicase (At-RECQ4A)-independent pathway. In addition, it is required for double-strand break-induced homologous recombination. The fertility of At-fancm mutant plants is compromised. Evidence suggests that during meiosis At-FANCM acts as antirecombinase to suppress ectopic recombination-dependent chromosome interactions, but this activity is antagonized by the ZMM pathway to enable the formation of interference-sensitive crossovers and chromosome synapsis. Surprisingly, mutation of At-FANCM overcomes the sterility phenotype of an At-MutS homolog4 mutant by apparently rescuing a proportion of crossover-designated recombination intermediates via a route that is likely At-MMS and UV sensitive81 dependent. However, this is insufficient to ensure the formation of an obligate crossover. Thus, At-FANCM is not only a safeguard for genome stability in somatic cells but is an important factor in the control of meiotic crossover formation.  相似文献   

6.
J Engebrecht  J Hirsch  G S Roeder 《Cell》1990,62(5):927-937
The yeast mer1 mutant produces inviable spores and is defective in both meiotic recombination and chromosome pairing. A gene called MER2 partially suppresses the mer1 phenotype when present in high copy number. Both gene conversion and chromosome pairing are completely restored in mer1 strains overexpressing MER2; however, reciprocal crossing over and spore viability are not restored. The data presented are consistent with a model in which chromosome pairing is a direct consequence of a homology search mediated through gene conversion. Analysis of random viable spores indicates that the crossovers that occur in mer1 strains overexpressing MER2 are more effective in ensuring meiosis I disjunction than those that occur in mer1 strains. One interpretation of this result is that only those crossovers that occur in the context of the synaptonemal complex lead to the establishment of functional chiasmata. The MER2 gene product is essential for meiosis.  相似文献   

7.
Suzuki Y  Morris GA  Han M  Wood WB 《Genetics》2002,160(4):1631-1639
The crossover distribution in meiotic tetrads of Arabidopsis thaliana differs from those previously described for Drosophila and Neurospora. Whereas a chi-square distribution with an even number of degrees of freedom provides a good fit for the latter organisms, the fit for Arabidopsis was substantially improved by assuming an additional set of crossovers sprinkled, at random, among those distributed as per chi square. This result is compatible with the view that Arabidopsis has two pathways for meiotic crossing over, only one of which is subject to interference. The results further suggest that Arabidopsis meiosis has >10 times as many double-strand breaks as crossovers.  相似文献   

8.
In Drosophila females, the majority of recombination events do not become crossovers and those that do occur are nonrandomly distributed. Furthermore, a group of Drosophila mutants specifically reduce crossing over, suggesting that crossovers depend on different gene products than noncrossovers. In mei-218 mutants, crossing over is reduced by approximately 90% while noncrossovers and the initiation of recombination remain unchanged. Importantly, the residual crossovers have a more random distribution than wild-type. It has been proposed that mei-218 has a role in establishing the crossover distribution by determining which recombination sites become crossovers. Surprisingly, a diverse group of genes, including those required for double strand break (DSB) formation or repair, have an effect on crossover distribution. Not all of these mutants, however, have a crossover-specific defect like mei-218 and it is not understood why some crossover-defective mutants alter the distribution of crossovers. Intragenic recombination experiments suggest that mei-218 is required for a molecular transition of the recombination intermediate late in the DSB repair pathway. We propose that the changes in crossover distribution in some crossover-defective mutants are a secondary consequence of the crossover reductions. This may be the activation of a regulatory system that ensures at least one crossover per chromosome, and which compensates for an absence of crossovers by attempting to generate them at random locations.  相似文献   

9.
OsHUS1 Facilitates Accurate Meiotic Recombination in Rice   总被引:1,自引:0,他引:1  
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.  相似文献   

10.
New evidence suggests that the model plant Arabidopsis has two biochemically distinct pathways that produce genetic crossovers. Studies in several organisms have revealed that one kind of crossover regulation - crossover interference - is applied differently from species to species. Arabidopsis appears to use an interference system similar to that of budding yeast.  相似文献   

11.
In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another--a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed.  相似文献   

12.
Using small palindromes to monitor meiotic double-strand-break-repair (DSBr) events, we demonstrate that two distinct classes of crossovers occur during meiosis in wild-type yeast. We found that crossovers accompanying 5:3 segregation of a palindrome show no conventional (i.e., positive) interference, while crossovers with 6:2 or normal 4:4 segregation for the same palindrome, in the same cross, do manifest interference. Our observations support the concept of a "non"-interference class and an interference class of meiotic double-strand-break-repair events, each with its own rules for mismatch repair of heteroduplexes. We further show that deletion of MSH4 reduces crossover tetrads with 6:2 or normal 4:4 segregation more than it does those with 5:3 segregation, consistent with Msh4p specifically promoting formation of crossovers in the interference class. Additionally, we present evidence that an ndj1 mutation causes a shift of noncrossovers to crossovers specifically within the "non"-interference class of DSBr events. We use these and other data in support of a model in which meiotic recombination occurs in two phases-one specializing in homolog pairing, the other in disjunction-and each producing both noncrossovers and crossovers.  相似文献   

13.
Crossing over and chiasma formation during Caenorhabditis elegans meiosis require msh-5, which encodes a conserved germline-specific MutS family member. msh-5 mutant oocytes lack chiasmata between homologous chromosomes, and crossover frequencies are severely reduced in both oocyte and spermatocyte meiosis. Artificially induced DNA breaks do not bypass the requirement for msh-5, suggesting that msh-5 functions after the initiation step of meiotic recombination. msh-5 mutants are apparently competent to repair breaks induced during meiosis, but accomplish repair in a way that does not lead to crossovers between homologs. These results combine with data from budding yeast to establish a conserved role for Msh5 proteins in promoting the crossover outcome of meiotic recombination events. Apart from the crossover deficit, progression through meiotic prophase is largely unperturbed in msh-5 mutants. Homologous chromosomes are fully aligned at the pachytene stage, and germ cells survive to complete meiosis and gametogenesis with high efficiency. Our demonstration that artificially induced breaks generate crossovers and chiasmata using the normal meiotic recombination machinery suggests (1) that association of breaks with a preinitiation complex is not a prerequisite for entering the meiotic recombination pathway and (2) that the decision for a subset of recombination events to become crossovers is made after the initiation step.  相似文献   

14.
15.
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution.  相似文献   

16.
In budding yeast meiosis, the formation of class I interference-sensitive crossovers requires the ZMM proteins. These ZMM proteins are essential in forming a mature synaptonemal complex, and a subset of these (Zip2, Zip3, and Zip4) has been proposed to compose the core of synapsis initiation complexes (SICs). Zip4/Spo22 functions with Zip2 to promote polymerization of Zip1 along chromosomes, making it a crucial SIC component. In higher eukaryotes, synapsis and recombination have often been correlated, but it is totally unknown how these two processes are linked. In this study, we present the characterization of a higher eukaryote SIC component homologue: Arabidopsis AtZIP4. We show that mutations in AtZIP4 belong to the same epistasis group as Atmsh4 and eliminate approximately 85% of crossovers (COs). Furthermore, genetic analyses on two adjacent intervals of Chromosome I established that the remaining COs in Atzip4 do not show interference. Lastly, immunolocalization studies showed that polymerization of the central element of the synaptonemal complex is not affected in Atzip4 background, even if it may proceed from fewer sites compared to wild type. These results reveal that Zip4 function in class I CO formation is conserved from budding yeast to Arabidopsis. On the other hand, and contrary to the situation in yeast, mutation in AtZIP4 does not prevent synapsis, showing that both aspects of the Zip4 function (i.e., class I CO maturation and synapsis) can be uncoupled.  相似文献   

17.
Spo11 is a homolog of a subunit of archaebacterial topoisomerase, which catalyzes DNA double-strand breaks and initiates homologous chromosome recombination. In the present study, we silenced the SPO11-1 gene in rice (Oryza sativa) using RNAi. Rice plants with loss-of-function of OsSPO11-1 have no apparent growth defects during vegetative development, but homologous chromosome pairing and recombination are significantly obstructed. Telomeres can be assembled as bouquet during the zygotene stage of the OsSPO11-1-deficient plants, just as that in wild type. Although the two axial-associated proteins, REC8 and PAIR2, are loaded onto the chromosomes, the depletion of PAIR2 from the chromosomes is much later than in wild type. The central element of the synaptonemal complex (SC), ZEP1, does not load onto the chromosomes normally, implying that SC formation is disturbed severely. The crossover protein, MER3, isn't efficiently assembled onto chromosomes and the lack of bivalent suggests that crossovers are also affected in the absence of OsSPO11-1. Thus, OsSPO11-1 is essential for both homologous chromosomes pairing and crossover formation during meiosis in rice.  相似文献   

18.
Joyce EF  McKim KS 《Genetics》2009,181(1):39-51
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.  相似文献   

19.
20.
K Wang  M Wang  D Tang  Y Shen  C Miao  Q Hu  T Lu  Z Cheng 《PLoS genetics》2012,8(7):e1002809
HEI10 was first described in human as a RING domain-containing protein that regulates cell cycle and cell invasion. Mice HEI10(mei4) mutant displays no obvious defect other than meiotic failure from an absence of chiasmata. In this study, we characterize rice HEI10 by map-based cloning and explore its function during meiotic recombination. In the rice hei10 mutant, chiasma frequency is markedly reduced, and those remaining chiasmata exhibit a random distribution among cells, suggesting possible involvement of HEI10 in the formation of interference-sensitive crossovers (COs). However, mutation of HEI10 does not affect early recombination events and synaptonemal complex (SC) formation. HEI10 protein displays a highly dynamic localization on the meiotic chromosomes. It initially appears as distinct foci and co-localizes with MER3. Thereafter, HEI10 signals elongate along the chromosomes and finally restrict to prominent foci that specially localize to chiasma sites. The linear HEI10 signals always localize on ZEP1 signals, indicating that HEI10 extends along the chromosome in the wake of synapsis. Together our results suggest that HEI10 is the homolog of budding yeast Zip3 and Caenorhabditis elegans ZHP-3, and may specifically promote class I CO formation through modification of various meiotic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号