首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arterial stiffness is higher in strength-trained humans and lower in endurance-trained humans. However, the mechanisms underlying these different adaptations are unclear. Vascular endothelium-derived factors, such as endothelin-1 (ET-1) and nitric oxide (NO), play an important role in the regulation of vascular tonus. We hypothesized that endogenous ET-1 and NO participate in the adaptation of arterial stiffness in different types of exercise training. The purpose of this study was to investigate plasma ET-1 and NO concentrations and arterial stiffness in strength- and endurance-trained men. Young strength-trained athletes (SA; n = 11), endurance-trained athletes (EA; n = 12), and sedentary control men (C; n = 12) participated in this study. Maximal handgrip strength in SA and maximal oxygen uptake in EA were markedly greater than in C. Aortic pulse-wave velocity, which is an established index of arterial stiffness, was higher in SA and lower in EA than in C. Additionally, we measured systemic arterial compliance (SAC) using carotid artery applanation tonometry and Doppler echocardiography, because arterial stiffness is a primary determinant of the compliance. SAC was lower in SA and higher in EA compared with that in C. Plasma ET-1 concentrations were higher in SA compared with C and EA. We did not find significant differences in plasma NO concentrations (measured as the stable end product of NO, i.e., nitrite/nitrate). The relationships of plasma ET-1 concentrations to aortic pulse-wave velocity and SAC were linear. These results suggest that differences in endogenous ET-1 may partly participate in the mechanism underlying different adaptations of arterial stiffness in strength- and endurance-trained men.  相似文献   

2.
Exercise training elicits morphological adaptations in the left ventricle (LV) and large-conduit arteries that are specific to the type of training performed (i.e., endurance vs. resistance exercise). We investigated whether the mode of chronic exercise training, and the associated cardiovascular adaptations, influence the blood pressure responses to orthostatic stimulation in 30 young healthy men (10 sedentary, 10 endurance trained, and 10 resistance trained). The endurance-trained group had a significantly larger LV end-diastolic volume normalized by body surface area (vs. sedentary and resistance-trained groups), whereas the resistance-trained group had a significantly higher LV wall thickness and aortic pulse wave velocity (PWV) compared with the endurance-trained group. In response to 60° head-up tilt (HUT), mean arterial pressure (MAP) rose in the resistance-trained group (+6.5 ± 1.6 mmHg, P < 0.05) but did not change significantly in sedentary and the endurance-trained groups. Systolic blood pressure (SBP) decreased in endurance-trained group (-8.3 ± 2.4 mmHg, P < 0.05) but did not significantly change in sedentary and resistance-trained groups. A forward stepwise multiple regression analysis revealed that LV wall thickness and aortic PWV were significantly and independently associated with the MAP response to HUT, explaining ~41% of its variability (R(2) =0.414, P < 0.001). Likewise, aortic PWV and the corresponding HUT-mediated change in stroke volume were significantly and independently associated with the SBP response to HUT, explaining ~52% of its variability (R(2) = 0.519, P < 0.0001). Furthermore, the change in stroke volume significantly correlated with LV wall thickness (r = 0.39, P < 0.01). These results indicate that chronic resistance and endurance exercise training differentially affect the BP response to HUT, and that this appears to be associated with training-induced morphological adaptations of the LV and large-conduit arteries.  相似文献   

3.
We hypothesized that abnormal endothelium-dependent vasodilation (EDD) found in older otherwise healthy subjects can be attenuated with long-term endurance training. Ten endurance-trained men, 68.5 +/- 2.3 yr old, and 10 healthy sedentary men, 64.7 +/- 1.4 yr old, were studied. Aerobic exercise capacity (VO(2 max)), fasting plasma cholesterol, insulin, and homocysteine concentrations were measured. Master athletes had higher VO(2 max) (42 +/- 2.3 vs. 27 +/- 1.4 ml. kg(-1). min(-1), P < 0.001), slightly higher total cholesterol (226 +/- 8 vs. 199 +/- 8 mg/dl, P = 0.05), similar insulin, and higher homocysteine (10.7 +/- 1.3 vs. 9.2 +/- 1.4 micromol/ml, p = 0.02) concentrations. Brachial arterial diameter, determined with vascular ultrasound, during the hyperemic response was greater in the master athletes than in controls (P = 0.005). Peak vasodilatory response was 109.1 +/- 2 vs. 103.6 +/- 2% (P < 0.05) in the athletes and controls, respectively. Endothelium-independent vasodilation in response to nitroglycerin was similar between the two groups. The increased arterial diameter during the hyperemic response correlated significantly with the VO(2 max) in the entire population (r = 0.66, P < 0.002). Our results suggest that long-term endurance exercise training in older men is associated with systemic enhanced EDD, which is even detectable in the conduit arteries of untrained muscle.  相似文献   

4.
The major isoform of nitric oxide synthase (NOS) in skeletal muscle is the splice variant of neuronal NOS, termed nNOS mu. Exercise training increases nNOS mu protein levels in rat skeletal muscle, but data in humans are conflicting. We performed two studies to determine 1) whether resting nNOS mu protein expression is greater in skeletal muscle of 10 endurance-trained athletes compared with 11 sedentary individuals (study 1) and 2) whether intense short-term (10 days) exercise training increases resting nNOS mu protein (within whole muscle and also within types I, IIa, and IIx fibers) in eight sedentary individuals (study 2). In study 1, nNOS mu protein was approximately 60% higher (P < 0.05) in endurance-trained athletes compared with the sedentary participants. In study 2, nNOS mu protein expression was similar in types I, IIa, and IIx fibers before training. Ten days of intense exercise training significantly (P < 0.05) increased nNOS mu protein levels in types I, IIa, and IIx fibers, a finding that was validated by using whole muscle samples. Endothelial NOS and inducible NOS protein were barely detectable in the skeletal muscle samples. In conclusion, nNOS mu protein expression is greater in endurance-trained individuals when compared with sedentary individuals. Ten days of intense exercise is also sufficient to increase nNOS mu expression in untrained individuals, due to uniform increases of nNOS mu within types I, IIa, and IIx fibers.  相似文献   

5.
In sedentary individuals, postexercise hypotension after a single bout of aerobic exercise is due to a peripheral vasodilation. Endurance exercise training has the potential to modify this response and perhaps reduce the degree of postexercise hypotension. We tested the hypothesis that endurance exercise-trained men and women would have blunted postexercise hypotension compared with sedentary subjects but that the mechanism of hypotension would be similar (i.e., vasodilation). We studied 16 endurance-trained and 16 sedentary men and women. Arterial pressure, cardiac output, and total peripheral resistance were determined before and after a single 60-min bout of exercise at 60% peak oxygen consumption. All groups exhibited a similar degree of postexercise hypotension (approximately 4-5 mmHg; P < 0.05 vs. preexercise). In sedentary men and women, hypotension was the result of vasodilation (Deltaresistance: -8.9 +/- 2.2%). In endurance-trained women, hypotension was also the result of vasodilation (-8.1 +/- 4.1%). However, in endurance-trained men, hypotension was the result of a reduced cardiac output (-5.2 +/- 2.4%; P < 0.05 vs. all others) and vasodilation was absent (-0.7 +/- 3.3%; P < 0.05 vs. all others). Thus we conclude the magnitude of postexercise hypotension is similar in sedentary and endurance-trained men and women but that endurance-trained men and women achieve this fall in pressure via different mechanisms.  相似文献   

6.
In sedentary individuals, H(1) receptors mediate the early portion of postexercise skeletal muscle hyperemia, whereas H(2) receptors mediate the later portion. It is not known whether postexercise hyperemia also presents in endurance-trained individuals. We hypothesized that the postexercise skeletal muscle hyperemia would also exist in endurance-trained individuals and that combined blockade of H(1) and H(2) receptors would abolish the long-lasting postexercise hyperemia in trained and sedentary individuals. We studied 28 sedentary and endurance trained men and women before and through 90 min after a 60-min bout of cycling at 60% peak O(2) uptake on control and combined H(1)- and H(2)-receptor antagonist days (fexofenadine and ranitidine). We measured arterial pressure (brachial auscultation) and femoral blood flow (Doppler ultrasound). On the control day, femoral vascular conductance (calculated as flow/pressure) was elevated in all groups 60 min after exercise (sedentary men: Delta86 +/- 35%, trained men, Delta65 +/- 18%; sedentary women, Delta61 +/- 19%, trained women: Delta59 +/- 23%, where Delta is change; all P < 0.05 vs. preexercise). In contrast, on the histamine antagonist day, femoral vascular conductance was not elevated in any of the groups after exercise (sedentary men: Delta21 +/- 17%, trained men: Delta9 +/- 5%, sedentary women: Delta19 +/- 4%, trained women: Delta11 +/- 11%; all P > 0.16 vs. preexercise; all P < 0.05 vs. control day). These data suggest postexercise skeletal muscle hyperemia exists in endurance trained men and women. Furthermore, histaminergic mechanisms produce the long-lasting hyperemia in sedentary and endurance-trained individuals.  相似文献   

7.
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.  相似文献   

8.
On the basis of cross-sectional data, we previously reported that the absolute, but not the relative (%), rate of decline in maximal oxygen consumption (VO(2 max)) with age is greater in endurance-trained compared with healthy sedentary women. We tested this hypothesis by using a longitudinal approach. Eight sedentary (63 +/- 2 yr at follow-up) and 16 endurance-trained (57 +/- 2) women were reevaluated after a mean follow-up period of 7 yr. At baseline, VO(2 max) was ~70% higher in endurance-trained women (48.1 +/- 1.7 vs. 28.1 +/- 0.8 ml. kg(-1). min(-1). yr(-1)). At follow-up, body mass, fat-free mass, maximal respiratory exchange ratio, and maximal rating of perceived exertion were not different from baseline in either group. The absolute rate of decline in VO(2 max) was twice as great (P < 0.01) in the endurance-trained (-0.84 +/- 0.15 ml. kg(-1). min(-1). yr(-1)) vs. sedentary (-0.40 +/- 0.12 ml. kg(-1). min(-1). yr(-1)) group, but the relative rates of decline were not different (-1.8 +/- 0.3 vs. -1.5 +/- 0.4% per year). Differences in rates of decline in VO(2 max) were not related to changes in body mass or maximal heart rate. However, among endurance-trained women, the relative rate of decline in VO(2 max) was positively related to reductions in training volume (r = 0.63). Consistent with this, the age-related reduction in VO(2 max) in a subgroup of endurance-trained women who maintained or increased training volume was not different from that of sedentary women. These longitudinal data indicate that the greater decrease in maximal aerobic capacity with advancing age observed in middle-aged and older endurance-trained women in general compared with their sedentary peers is due to declines in habitual exercise in some endurance-trained women. Endurance-trained women who maintain or increase training volume demonstrated age-associated declines in maximal aerobic capacity not different from healthy sedentary women.  相似文献   

9.
Maximal vascular leg conductance in trained and untrained men   总被引:4,自引:0,他引:4  
Lower leg blood flow and vascular conductance were studied and related to maximal oxygen uptake in 15 sedentary men (28.5 +/- 1.2 yr, mean +/- SE) and 11 endurance-trained men (30.5 +/- 2.0 yr). Blood flows were obtained at rest and during reactive hyperemia produced by ischemic exercise to fatigue. Vascular conductance was computed from blood flow measured by venous occlusion plethysmography, and mean arterial blood pressure was determined by auscultation of the brachial artery. Resting blood flow and mean arterial pressure were similar in both groups (combined mean, 3.0 ml X min-1 X 100 ml-1 and 88.2 mmHg). After ischemic exercise, blood flows were 29- and 19-fold higher (P less than 0.001) than rest in trained (83.3 +/- 3.8 ml X min-1 X 100 ml-1) and sedentary subjects (61.5 +/- 2.3 ml X min-1 X 100 ml-1), respectively. Blood pressure and heart rate were only slightly elevated in both groups. Maximal vascular conductance was significantly higher (P less than 0.001) in the trained compared with the sedentary subjects. The correlation coefficients for maximal oxygen uptake vs. vascular conductance were 0.81 (trained) and 0.45 (sedentary). These data suggest that physical training increases the capacity for vasodilation in active limbs and also enables the trained individual to utilize a larger fraction of maximal vascular conductance than the sedentary subject.  相似文献   

10.
Decline in VO2max with aging in master athletes and sedentary men   总被引:1,自引:0,他引:1  
Fifteen well-trained master endurance athletes [62.0 +/- 2.3 (SE) yr] and 14 sedentary control subjects (61.4 +/- 1.4 yr) were reevaluated after an average follow-up period of approximately 8 yr to obtain information regarding the effects of physical activity on the age-related decline in maximal O2 uptake capacity (VO2max). The master athletes had been training for 10.2 +/- 2.9 yr before initial testing and continued to train during the follow-up period. The sedentary subjects' VO2max declined by an average of 3.3 ml.kg-1.min-1 (33.9 +/- 1.7 vs. 30.6 +/- 1.6, P less than 0.001) over the course of the study, a decline of 12% per decade. In these subjects maximal heart rate declined 8 beats/min (171 vs. 163) and maximal O2 pulse decreased from 0.20 to 0.18 ml.kg-1.beat (P less than 0.05). The master athletes' VO2 max decreased by an average of 2.2 ml.kg-1.min-1 (54.0 +/- 1.7 vs. 51.8 +/- 1.8, P less than 0.05), a 5.5% decline per decade. The master athletes' maximal heart rate was unchanged (171 +/- 3 beats/min) and their maximal O2 pulse decreased from 0.32 to 0.30 ml.kg-1.beat (P less than 0.05). These findings provide evidence that the age-related decrease in VO2max of master athletes who continue to engage in regular vigorous endurance exercise training is approximately one-half the rate of decline seen in age-matched sedentary subjects. Furthermore our results suggest that endurance exercise training may reduce the rate of decline in maximal heart rate that typically occurs as an individual ages.  相似文献   

11.
Effect of physical training on the capacity to secrete epinephrine   总被引:5,自引:0,他引:5  
Epinephrine responses to hypoglycemia and to identical relative work loads have been shown to be higher in endurance-trained athletes than in untrained subjects. To test the hypothesis that training increases the adrenal medullary secretory capacity, we studied the effects of glucagon (1 mg/70 kg iv), acute hypercapnia (inspired O2 fraction = 7%), and acute hypobaric hypoxia (inspired Po2 = 87 Torr), respectively, on the epinephrine concentration in arterialized hand vein blood in eight endurance-trained athletes [T, O2 uptake = 66 (62-70) ml.min-1.kg-1] and seven sedentary males [C, O2 uptake = 46 (41-50)]. In response to identical increments in glucagon concentrations, plasma epinephrine increased more in T than in C subjects [0.87 +/- 0.11 vs. 0.38 +/- 0.14 (SE) nmol/l, P less than 0.05]. In response to hypercapnia [arterial PCO2 = 56 +/- 0.7 Torr (T) and 55 +/- 0.4 (C), P greater than 0.05], the increment in epinephrine was significant in T (0.38 +/- 0.11 nmol/l) but not (P less than 0.1) in C subjects (0.22 +/- 0.11). Hypoxia [arterial PO2 = 42 +/- 2 Torr (T) and 41 +/- 2 (C), P greater than 0.05] increased epinephrine in T (0.22 +/- 0.10 nmol/l, P less than 0.05) but not in C subjects (0.01 +/- 0.07). The plasma norepinephrine concentration never changed, whereas heart rate always increased, the increase being higher (P less than 0.05) in T than in C subjects only during hypercapnia. The results indicate that training increases the capacity to secrete epinephrine.  相似文献   

12.
Groups of endurance-trained masters athletes (60 +/- 2 yr), older untrained men (62 +/- 1 yr), lean older untrained men (61 +/- 2 yr), endurance-trained young athletes (26 +/- 1 yr), and young untrained men (28 +/- 1 yr) were studied to obtain information on the separate effects of age, physical activity, and body fatness on glucose tolerance and insulin sensitivity. Each subject underwent an oral 100-g glucose tolerance test. Skinfold thickness was determined at six sites. The trained groups had a higher maximum O2 uptake capacity and lower sum of skinfolds than their sedentary peers. The lean older untrained group had a sum of skinfolds similar to that of the young untrained group. The masters athletes, young athletes, and young untrained men exhibited similar glucose tolerance whereas the two older untrained groups had an almost twofold greater total area under the glucose curve (P less than 0.05). The masters and young athletes had significantly blunted plasma insulin responses compared with the other three groups (P less than 0.05). The young and the lean older untrained groups had similar plasma insulin responses with significantly lower insulin levels than the older untrained group (P less than 0.05). These results provide evidence that regularly performed vigorous exercise can, in some individuals, prevent the deterioration of glucose tolerance and insulin sensitivity with age.  相似文献   

13.
Arteriosclerosis with aging leads to central arterial stiffening in humans, which could be a prime cause for increased cardiac afterload in the elderly. The purpose of the present study was to assess the effects of 1 yr of progressive exercise training on central aortic compliance and left ventricular afterload in sedentary healthy elderly volunteers. Ten healthy sedentary seniors and 11 Masters athletes (>65 yr) were recruited. The sedentary seniors underwent 1 yr of progressive exercise training so that at the end of the year, they were exercising ~200 min/wk. Central aortic compliance was assessed by the Modelflow aortic age, which reflects the intrinsic structural components of aortic compliance. Cardiac afterload was assessed by effective arterial elastance (Ea) with its contributors of peripheral vascular resistance (PVR) and systemic arterial compliance (SAC). After exercise training, Ea, PVR, and SAC were improved in sedentary seniors and became comparable with those of Masters athletes although the Modelflow aortic age was not changed. Moreover, after exercise training, when stroke volume was restored with lower body negative pressure back to pretraining levels, the exercise training-induced improvements in Ea, PVR, and SAC were eliminated. Aortic stiffening with aging was not improved even after 1 yr of progressive endurance exercise training in the previously sedentary elderly, while left ventricular afterload was reduced. This reduced afterload after exercise training appeared to be attributable to cardiovascular functional modulation to an increase in stroke volume rather than to intrinsic structural changes in the arterial wall.  相似文献   

14.
To determine the relation between habitual endurance exercise status and the age-associated decline in maximal aerobic capacity [i.e., maximal O(2) consumption (Vo(2 max))] in men, we performed a well-controlled cross-sectional laboratory study on 153 healthy men aged 20-75 yr: 64 sedentary and 89 endurance trained. Vo(2 max) (ml. kg(-1). min(-1)), measured by maximal treadmill exercise, was inversely related to age in the endurance-trained (r = -0.80) and sedentary (r = -0.74) men but was higher in the endurance-trained men at any age. The rate of decline in Vo(2 max) with age (ml. kg(-1). min(-1)) was greater (P < 0.001) in the endurance-trained than in the sedentary men. Whereas the relative rate of decline in Vo(2 max) (percent decrease per decade from baseline levels in young adulthood) was similar in the two groups, the absolute rate of decline in Vo(2 max) was -5.4 and -3.9 ml. kg(-1). min(-). decade(-1) in the endurance-trained and sedentary men, respectively. Vo(2 max) declined linearly across the age range in the sedentary men but was maintained in the endurance-trained men until approximately 50 yr of age. The accelerated decline in Vo(2 max) after 50 yr of age in the endurance-trained men was related to a decline in training volume (r = 0.46, P < 0.0001) and was associated with an increase in 10-km running time (r = -0.84, P < 0.0001). We conclude that the rate of decline in maximal aerobic capacity during middle and older age is greater in endurance-trained men than in their sedentary peers and is associated with a marked decline in O(2) pulse.  相似文献   

15.
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.  相似文献   

16.
We tested the hypothesis that regular endurance exercise prevents the age-related decline in insulin action typically observed in healthy, sedentary adults. An index of whole body insulin sensitivity (ISI), obtained from minimal model analysis of insulin and glucose concentrations during a frequently sampled intravenous glucose tolerance test, was determined in 126 healthy adults: 25 young [27 +/- 1 (SE) yr; 13 men/12 women] and 43 older (59 +/- 1 yr; 20/13) sedentary and 25 young (29 +/- 1 yr; 12/13) and 33 older (60 +/- 1 yr; 20/13) endurance trained. ISI values were lower in the older vs. young adults in both sedentary (-53%; 3.9 +/- 0.3 vs. 7.0 +/- 0.7 x10(-4) x min(-1) x microU(-1) x ml(-1); P < 0.01) and endurance-trained (-36%; 7.9 +/- 0.6 vs. 12.4 +/- 1.0 x 10(-4) min(-1) x microU(-1) x ml(-1); P < 0.01) groups, but the value was 72-102% higher in the trained subjects at either age (P < 0.01). In subgroup analysis of sedentary and endurance-trained adults with similar body fat levels (n = 62), the age-related reduction in ISI persisted only in the endurance-trained subjects (12.9 +/- 1.9 vs. 8.7 +/- 1.2 x 10(-4) x min(-1) x microU(-1) x ml(-1); P < 0.01). The results of the present study suggest that habitual endurance exercise does not prevent the age-associated decline insulin action. Moreover, the age-related reduction in ISI in endurance-trained adults appears to be independent of adiposity.  相似文献   

17.
Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (VO2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean +/- SEM age 23.5 +/- 0.9 years, height 182.6 +/- 2.4 cm, weight 72.5 +/- 2.4 kg, VO2max 75.9 +/- 0.8 mL.kg.min) and seven healthy controls (age 25.4 +/- 1.2 years, height 183.9 +/- 3.74 cm, weight 92.8 +/- 3.9 kg, VO2max 47.7 +/- 1.7 mL.kg.min) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 x 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.  相似文献   

18.
Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and proliferative obstruction of pulmonary vessels, which promotes a progressive increase in pulmonary vascular resistance (PVR). The effect of exercise training on oxidative stress, metabolism, and markers of nitric oxide (NO) and endothelin-1 (ET-1) was analyzed in the lung tissue of rats with PAH induced by monocrotaline (MCT).Twenty-four Wistar rats were divided into four groups (5–7 animals): sedentary control (SC), sedentary MCT (SM), trained control (TC), and trained MCT (TM). The TC and TM groups participated in a treadmill training protocol (60% VO2 max) for 5 weeks, 3 weeks of which were performed after the injection of MCT (60 mg/kg i.p.) or saline. MCT administration promoted an increase in PVR and right ventricle hypertrophy, and reduction of right ventricle systolic function assessed by echocardiography. These changes were not improved by exercise training. The activity of NO synthase was reduced in the animals of the TC, TM, and SM groups. No significant differences were found in total nitrite concentration and expression of endothelial NO synthase. Moreover, the TM group showed strong staining for iNOS and nitrotyrosine, suggesting an increase in oxidative stress in these animals. In parallel, reduced expression of type B ET-1 receptors was noticed in the SM and TM groups in comparison to controls. In conclusion, the aerobic training protocol was unable to mitigate changes in the metabolism of NO and ET-1, probably because of the disease severity in these animals, especially in the TM group.  相似文献   

19.
We previously reported that even low-intensity, short-duration acute aerobic exercise decreases arterial stiffness. We aimed to test the hypothesis that the exercise-induced decrease in arterial stiffness is caused by the increased production of NO in vascular endothelium with exercise. Nine healthy men (age: approximately 22-28 yr) performed a 5-min single-leg cycling exercise (30 W) in the supine position under an intravenous infusion of NG-monomethyl-L-arginine (L-NMMA; 3 mg/kg during the initial 5 min and subsequent continuous infusion of 50 mug.kg(-1).min(-1) in saline) or vehicle (saline) in random order on separate days. The pulse wave velocity (PWV) from the femoral to posterior tibial artery was measured on both legs before and after the infusion at rest and 2 min after exercise. Under the control condition, exercised leg PWV significantly decreased after exercise (P <0.05), whereas nonexercised leg PWV did not show a significant change throughout the experiment. Under L-NMMA administration, exercised leg PWV was increased significantly by the infusion (P <0.05) but decreased significantly after the exercise (P <0.05). Nonexercised leg PWV increased with L-NMMA administration and maintained a significantly higher level during the administration compared with baseline (before the infusion, all P <0.05). The NO synthase blockade x time interaction on exercised leg PWV was not significant (P=0.706). These results suggest that increased production of NO is not a major factor in the decrease of regional arterial stiffness with low-intensity, short-duration aerobic exercise.  相似文献   

20.
Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 x 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (ET approximately 8.5-fold, ST approximately 10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET approximately 26-fold, ST approximately 39-fold), vascular endothelial growth factor (VEGF; ET approximately 4.5-fold, ST approximately 4-fold), and muscle atrophy F-box protein (MAFbx) (ET approximately 2-fold, ST approximately 0.4-fold) mRNA increased in both groups, whereas MyoD (approximately 3-fold), myogenin (approximately 0.9-fold), and myostatin (approximately 2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (approximately 7-fold, P < 0.01) and MyoD (approximately 0.7-fold) increased, whereas MAFbx (approximately 0.7-fold) and myostatin (approximately 0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号