首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ontogeny of the Molluscan Shell Field: a Review   总被引:3,自引:0,他引:3  
In the gastropod, scaphopod, lamellibranch, and cephalopod gastrulae a thickened portion of the posttrochal region is referred to as the embryonic shell field. It invaginates and gives rise to the shell gland. In species with an at least temporarily external shell, the shell gland evaginates and again forms a shell field. In lamellibranchs, the shell field grows into two halves connected by the ligament-secreting isthmus. In polyplacophorans plate fields are produced without invagination. Slugs and endocochleate cephalopods overgrow the embryonic shell field to form an internal shell sac. The calcified part of the shell is secreted by the flattened central region. The periostracum has its origin in the permanently thickened peripheral region of the shell field. In many forms, this region is depressed in a periostracal groove. If the shell is external, the central region of flattened cells, the mantle roof, along with the two or three marginal folds of the free mantle edge and, in species with internal shell, the shell sac are parts of the mantle. The shell field descends from the first somatoblasts. Either of 2 d or 2 c alone is able to form the shell field. There are arguments that the formation of the embryonic shell field is not autonomic, but induced by the entoderm during a period of contact. The shell gland and the shell field grow by mitotic cell divisions. Cells secreting organic material are highly prismatic, have a well developed ergastoplasm and large dictyosornes, and contain much peroxidase. The secretion of calcium manifests itself in very flat cells, rich in alkaline phosphatase and glycogen. The shell gland and the rosette of ectocochleate conchifera together are homologous to the proximal part of the shell sac in slugs and endocochleate cephalopods.  相似文献   

2.
Ammonites survived for millions of years despite steadily increasing competition from fish and coleoid cephalopods. The physiology and behaviour of Nautilus, the only remaining, if rather distantly related, ectocochleate cephalopod suggest as possible reasons the ability to remain aerobically active, albeit intermittently, at very low oxygen tensions and the ability to migrate vertically in and out of such zones at low cost. With the progressive oxygenation of the oceans shallow water hypoxic environments largely disappeared, trapping the ammonites and their vulnerable planktonic young stages between the depth limits imposed by their buoyancy mechanism and the high oxygen tension environments where they were exposed to faster and more economical predators and competitors.  相似文献   

3.
Argonauts (Cephalopoda: Argonautidae) are a group of rarely encountered open-ocean pelagic octopuses with benthic ancestry. Female argonauts inhabit a brittle ‘paper nautilus’ shell, the role of which has puzzled naturalists for millennia. The primary role attributed to the shell has been as a receptacle for egg deposition and brooding. Our observations of wild argonauts have revealed that the thin calcareous shell also functions as a hydrostatic structure, employed by the female argonaut to precisely control buoyancy at varying depths. Female argonauts use the shell to ‘gulp’ a measured volume of air at the sea surface, seal off the captured gas using flanged arms and forcefully dive to a depth where the compressed gas buoyancy counteracts body weight. This process allows the female argonaut to attain neutral buoyancy at depth and potentially adjust buoyancy to counter the increased (and significant) weight of eggs during reproductive periods. Evolution of this air-capture strategy enables this negatively buoyant octopus to survive free of the sea floor. This major shift in life mode from benthic to pelagic shows strong evolutionary parallels with the origins of all cephalopods, which attained gas-mediated buoyancy via the closed-chambered shells of the true nautiluses and their relatives.  相似文献   

4.
Several soft‐tissue imprints and attachment sites have been discovered on the inside of the shell wall and on the apertural side of the septum of various fossil and Recent ectocochleate cephalopods. In addition to the scars of the cephalic retractors, steinkerns of the body chambers of bactritoids and some ammonoids from the Moroccan and the German Emsian (Early Devonian) display various kinds of striations; some of these striations are restricted to the mural part of the septum, some start at the suture and terminate at the anterior limit of the annular elevation. Several of these features were also discovered in specimens of Mesozoic and Recent nautilids. These structures are here interpreted as imprints of muscle fibre bundles of the posterior and especially the septal mantle, blood vessels as well as the septal furrow. Most of these structures were not found in ammonoids younger than Middle Devonian. We suggest that newly formed, not yet mineralized (or only slightly), septa were more tightly stayed between the more numerous lobes and saddles in more strongly folded septa of more derived ammonoids and that the higher tension in these septa did not permit soft‐parts to leave imprints on the organic preseptum. It is conceivable that this permitted more derived ammonoids to replace the chamber liquid faster by gas and consequently, new chambers could be used earlier than in other ectocochleate cephalopods, perhaps this process began even prior to mineralization. This would have allowed faster growth rates in derived ammonoids.  相似文献   

5.
A morphological comparison of shell‐muscle contacts in coleoid cephalopods mainly from the Early Jurassic (Toarcian) Posidonia Shales of Holzmaden (Germany), the Middle Jurassic (Callovian) Oxford Clay of Christian Malford (UK), Late Jurassic (Kimmeridgian‐Tithonian) plattenkalks of Solnhofen (Germany), and the Late Cretaceous (Cenomanian) of Hâdjoula and Hâkel (Lebanon) provides new and meaningful insights into their locomotion systems. The study shows that both pro‐ostracum‐ and gladius‐bearing coleoids are typified by a marginal mantle attachment and by distinctly separated fins, which usually insert (indirectly via the shell sac and basal fin cartilages) to posterior shell parts. While absent in gladius‐bearing forms, mantle‐locking cartilages might have existed already in pro‐ostracum‐bearing belemnoids. Similar to ectocochleate ancestors, funnel‐ and cephalic retractors are generally attached to the internal (ventral) shell surface. A comparison of Mesozoic and Recent gladius‐bearing coleoids shows that the locomotion system (most significantly the dorsal mantle configuration, and the presence of nuchal‐ and funnel‐locking cartilages) is fundamentally different. This does not support the concept of ‘fossil teuthids’, but suggests, owing to similarities with Recent Vampyroteuthis, placement of Mesozoic gladius‐bearing coleoids within the Octobrachia (Octopoda + Vampyromorpha). Classification of Mesozoic gladius‐bearing coleoids as octobrachians implies that: (1) unambiguous teuthids are still unknown in the fossil record and (2) the similarity between Recent and some fossil gladiuses represents a matter of homoplasy.  相似文献   

6.
A molecular and karyological approach to the taxonomy of Nautilus   总被引:1,自引:0,他引:1  
Nautiloids, the externally shelled cephalopods of Cambrian origin, are the most ancient lineage among extant cephalopods. Their ancestral characters are explored based on morphological and molecular data (18S rDNA sequence) to investigate the evolution of present cephalopod lineages. Among molluscs, nautilus 18S rDNA gene is the longest reported so far, due to large nucleotidic insertions. By comparison with other 18S sequences, the complete gene of N. macromphalus helps to clarify the taxonomic status of the three universally recognised Nautilus species. The range of interspecific molecular differences supports separation of the present species into two surviving ectocochleate genera, Nautilus and Allonautilus. Nautiloid 18S is considered as corresponding to the ancestral form of 18S as is the number of chromosomes in Nautilus (52), the lowest among cephalopods. Comparison of karyological characteristics amongst cephalopods in a phylogenetic context suggests a possible correlation between duplication events and lineage divergence.  相似文献   

7.
Coleoid cephalopods are characterized by internalization of their shell, and are divided into the ten‐armed Decabrachia (squids and cuttlefish) and the eight‐armed Vampyropoda (octopuses and vampire squid). They have a rich fossil record predominantly of the limited biomineralized skeletal elements they possess: arm hooks, statoliths, mouthparts (the buccal mass) and internal shell (gladius or pen), although exquisitely preserved soft tissue coleoids are known from several Lagerstätten worldwide. Recent studies have shown that although morphological similarities between extant decabrachian gladii and fossil examples exist, no known examples of fossil decabrachians are currently known. However, molecular clock data and phylogenetic bracketing suggest that they should be present in Lagerstätten that are rich in vampyropod soft tissue fossils (i.e. Hâkel and Hâdjoula Lagerstätten, Cretaceous, Lebanon). We propose that a hitherto unknown taphonomic bias pertaining to the differing methods of buoyancy control within coleoid groups limits preservation potential. Both negatively and neutrally buoyant decabrachians use chemical buoyancy control (ammonia) whereas vampyropods do not. In the event of rapid burial in an environment conducive to exceptional preservation, ammonia dramatically decreases the ability of the decabrachian carcass to generate the required pH for authigenic calcium phosphate replacement, limiting its preservation potential. Moreover, the greater surface area and comparatively fragile dermis further decrease the potential for fossilization. This taphonomic bias may have contributed to the lack of preserved labile soft‐tissues in other cephalopods groups such as the ammonoids.  相似文献   

8.
Scaphopods comprise about 900 described species of elongate infaunal molluscs, separated into two orders. The phylogenetic position of this class is contentious, having been proposed as a sister-group to bivalves or alternatively cephalopods, all groups that notably represent dramatic modifications of the molluscan body plan and historical confusion over the fundamental body axes. The digging scaphopod foot was previously considered to be anterior. Here we use a three-dimensional tomographic reconstruction of digestive anatomy and partial dorso-ventral musculature, to test the hypothesis that the scaphopod foot is ventral. Similar to cephalopods, the body orientation is confounded by ano-pedal flexion, but rationalising scaphopods is perhaps further undermined by their infaunal lifestyle, which confounds comparison of ecological life position. Some scaphopods are locally abundant, providing good quality material for anatomical study. In our focal species, Rhabdus rectius (Carpenter, 1864), sexes can reliably be differentiated in vivo by differential colour of the gonad (yellow in females; white in males). The gut is composed of three complete loops. Based on the orientation of the digestive tract and the dorso-ventral muscles, we find further evidence to support the interpretation that the concave side of the scaphopod shell is anterior (the site of the mouth) and the foot is ventral.  相似文献   

9.
Stridsberg, Sven 1981 12 15: Apertural constrictions in some oncocerid cephalopods. Lethaia , Vol. 14, pp. 269–276. Oslo. ISSN 0024–1164.
In some oncocerid cephalopods the shape of the aperture, siphuncle and the general outline of the shell have long served as generic characters. The aperture is mostly elaborated into a certain number of sinuses which take their final shape only in the adult. Therefore, knowledge of the relative age of the animal is required. The last chamber may serve as an indicator of age. A last chamber smaller than the second last indicates a mature specimen. This is because continued growth would have caused the death of the animal as the buoyancy turned negative. Moreover, it is of great importance to study the growth lines along the peristome to observe whether growth has ceased or not. Growth variations have been compared with growth stages. Furthermore, a constricted or contracted aperture can only be determined on specimens with the shell still preserved. Functional parallels are drawn between the Aprychopsis operculum and the restricted aperture. * Cephalopoda, Oncorerida. aperture, ontogeny, growth lines, functional morphologv , Aptychopsis. Silurian, Gotland .  相似文献   

10.
The five greatest sublethal injuries were selected from a collection of more than 12,000 predominantly Mesozoic injured or otherwise pathological ammonoids. The loss of shell mass from these survived injuries was calculated and compared with comparable tolerances in the recent Nautilus . These ammonoids tolerated a shell loss up to four times greater than in Nautilus . The maximum tolerated shell loss indicates an unexpected buoyancy compensation mechanism. The buoyancy of the selected specimens was calculated. The results show that the buoyancy of all the observed ammonoid shells was positive. In order to maintain neutral buoyancy after injury, these ammonoids had to fill the phragmocone with a volume of mass. Nautilus compensated a maximum mass loss requiring a liquid refill of 3% of the cameral capacity, the ammonoids compensated a maximum of observed mass loss requiring a liquid refill of more than 10% of cameral capacity. The ratio of chamber volume/siphuncular surface area in the ammonoid Lithacoceras is 0.043, indicating that the relative area of the siphuncular epithelium in Lithacoceras is significantly higher when compared with a ratio of 0.12-0.14 in the adult Nautilus . The phragmocone in ammonoids offered the ability of a much more active buoyancy regulation than in Nautilus .  相似文献   

11.
Abstract:  The meaning of modifications in septal spacing that often coincide with maturity in extant Nautilus and fossil nautiloids, and also in ammonoids, remains controversial. In the Callovian nautilid species Paracenoceras marocense Miller and Collinson, 1952 , the extent of decrease in septal spacing and the exceptional number of approximated septa are correlated with an unusual positive ontogenetic allometry in whorl-width expansion. This allometric growth implies that the threshold weight of the animal, requiring the formation of a new chamber to maintain near-neutral buoyancy, was reached for an increasingly shorter angular length of shell added to the aperture. Thus, the available space for the newly forming chamber behind the advancing body was reduced accordingly. Ontogenetic modifications in septal spacing are linked to relative growth of the animal. The flexibility in the mechanisms of buoyancy regulation would be expected to have been a critical factor affecting the possible set of ontogenetic trajectories in chambered cephalopods and thus the realm of variation upon which selection could act.  相似文献   

12.
Raup, D. M.: Depth inferences from vertically imbedded cephalopods.
Vertically imbedded cephalopods are not uncommon in the fossil record. Experiments with modern Nautilus show that after death the shell cannot maintain a vertical orientation on the sea floor unless the depth is less than about 10 m. At greater depths, hydrostatic pressure causes flooding of the phragmocone sufficient to make the shell fall over. The depth limit applies whether the shell floats after death or not. Calculations made on data from six ammonite species indicate that the same depth limit can be applied to fossil coiled cephalopods. Vertical preservation can occur in deeper water only if the shell is vertically oriented upon impact and if the sediment is such as to trap the shell in that position.  相似文献   

13.
A 3D model of the Middle Jurassic ammonoid Normannites with an apertural modification from Thürnen, Switzerland, was constructed using physical–optical tomography. It was tested to determine whether the formation of the apertural modification affected shell orientation, to estimate buoyancy regulation and to reconstruct the mode of life of this ammonoid. No drastic postural changes occurred between the 3D models that excluded and included lappets, suggesting that the lappets were not formed to change the syn vivo shell orientation and, in turn, locomotion. We speculate that these adult shell modifications served to protect the soft parts during the reproduction period. Buoyancy calculations based on the model assume that ammonoids were positively buoyant when the phragmocone was devoid of liquid. When 31% of the entire phragmocone was filled with liquid, the living animal would have reached neutral buoyancy in contrast to 27% of cameral liquid filling when the weight of the aptychi is included. Provided that smaller ammonoids had more cameral liquid than bigger ammonoids, such as the modern Nautilus, Normannites examined in this study would have been able to maintain neutral buoyancy and might have had a demersal, nektobenthic or nektonic habitat somewhere in the water column.  相似文献   

14.
Externally shelled cephalopods were important elements in open marine habitats throughout Earth history. Paleotemperatures calculated on the basis of the oxygen isotope composition of their shells can provide insights into ancient marine systems as well as the ecology of this important group of organisms. In some sedimentary deposits, however, the aragonitic shell of the ammonite or nautilid is poorly or not preserved at all, while the calcitic structures belonging to the jaws are present. This study tests for the first time if the calcitic jaw structures in fossil cephalopods can be used as a proxy for paleotemperature. We first analyzed the calcitic structures on the jaws of Recent Nautilus and compared the calculated temperatures of precipitation with those from the aragonitic shell in the same individuals. Our results indicate that the jaws of Recent Nautilus are secreted in isotopic equilibrium, and the calculated temperatures approximately match those of the shell. We then extended our study to ammonites from the Upper Cretaceous (Campanian) Pierre Shale of the U.S. Western Interior and the age-equivalent Mooreville Chalk of the Gulf Coastal Plain. In the Pierre Shale, jaws occur in situ inside the body chambers of well-preserved Baculites while in the Mooreville Chalk, the jaw elements appear as isolated occurrences in the sediment and the aragonitic shell material is not preserved. For the Pierre Shale specimens, the calculated temperatures of well-preserved jaw material match those of well-preserved shell material in the same individual. Analyses of the jaw elements in the Mooreville Chalk permit a comparison of the paleotemperatures between the two sites, and show that the Western Interior is warmer than the Gulf Coast at that time. In summary, our data indicate that the calcitic jaw elements of cephalopods can provide a reliable geochemical archive of the habitat of fossil forms.  相似文献   

15.
An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small‐egged taxa, as is also seen in simultaneously evolving fish taxa.  相似文献   

16.
Yochelson, E. L., Flower, R. H. & Webers, G. F.: The hearing of the new Late Cambrian monoplacophoran genus Knightoconus upon the origin of the Cephalopoda.
Knightoconus , a new genus of the Hypseloconidae (Mollusca: Monoplacophora) from rocks of early Franconian age in Antarctica, is multiseptate. The multiple septa are a criticàl feature to be expected in a form ancestral to cephalopods. Fossil cephalopods, however, invariably have a siphuncle as well as septa; some gastropods, some hyolithids, and some monoplacophorans also have septa but lack a siphuncle. Therefore, only the siphuncle can be considered a unique and particularly significant feature of the cephalopod shell. Hypothetical reconstructions of molluscan anatomy support the notion that cephalopods may have been derived directly from a hypseloconid having a high, slightly curved, multiseptate, bilaterally symmetrical shell, by the subsequent development of a siphuncle.  相似文献   

17.
Tsujino, Y & Shigeta, Y. 2012: Biological response to experimental damage of the phragmocone and siphuncle in Nautilus pompilius Linnaeus. Lethaia, Vol. 45, pp. 443–449. Three adult specimens of Nautilus pomplilius Linnaeus from the Philippines were experimented on to estimate the biological response to damage of the phragmocone and siphuncle in this cephalopod mollusc. In addition, the data obtained from the experiments were used for discussion of shell damage in ammonoids and in other extinct cephalopods. Specimen’s phragmocone and siphuncle were perforated and severed artificially, followed by observations in the laboratory tank during periods of 75 and 132 days. For at least 2 or 3 months, all individuals survived after damage to the phragmocone and siphuncle despite loss of neutral buoyancy. Based on our observations after completion of the experiments, the severed adoral remaining part of siphuncle healed by the siphunclar epithelium. In addition, perforation of the phragmocone was partly repaired by shell secretion from the dorsally extending mantle due to subsequent volution of shell growth. Our experiments revealed that damage to the phragmocone and siphuncle in Nautilus was not necessarily a lethal injury. It may be possible that such biological response also applies to extinct ammonoids and nautiloids. In a similar case of extinct ammonoids and nautiloids, damage to their phragmocone and siphuncle may also not have been a lethal injury as with Nautilus. However, some factors leading to death are likely to be dependent on the degree of damage to the phragmocone and siphuncle and influence of hydraulic pressure. □Ammonoids, injury, nautiloids, Nautilus, phragmocone, repair, siphuncle.  相似文献   

18.
Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40–500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.  相似文献   

19.
Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction.  相似文献   

20.
During the Devonian Nekton Revolution, ammonoids show a progressive coiling of their shell just like many other pelagic mollusk groups. These now extinct, externally shelled cephalopods derived from bactritoid cephalopods with a straight shell in the Early Devonian. During the Devonian, evolutionary trends toward tighter coiling and a size reduction occurred in ammonoid embryonic shells. In at least three lineages, descendants with a closed umbilicus evolved convergently from forms with an opening in the first whorl (umbilical window). Other lineages having representatives with open umbilici became extinct around important Devonian events whereas only those with more tightly coiled embryonic shells survived. This change was accompanied by an evolutionary trend in shape of the initial chamber, but no clear trend in its size. The fact that several ammonoid lineages independently reduced and closed the umbilical window more or less synchronously indicates that common driving factors were involved. A trend in size decrease of the embryos as well as the concurrent increase in adult size in some lineages likely reflects a fundamental change in reproductive strategies toward a higher fecundity early in the evolutionary history of ammonoids. This might have played an important role in their subsequent success as well as in their demise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号