首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA polymerase I gene of a newly described deep-sea hydrothermal vent Archaea species, Thermococcus fumicolans, from IFREMERS's collection of hyperthermophiles has been cloned in Escherichia coli. As in Thermococcus litoralis, the gene is split by two intervening sequences (IVS) encoding inteins inserted in sites A and C of family B DNA polymerases. The entire DNA polymerase gene, containing both inteins, was expressed at 30°C in E. coli strain BL21(DE3)pLysS using the pARHS2 expression vector. The native polypeptide precursor of 170 kDa was obtained, and intein splicing as well as ligation of the three exteins was observed in vitro after heat exposure. The recombinant enzyme was purified and some of its activities were characterized: polymerization, thermostability, exonuclease activities, and fidelity. Received: September 17, 1999 / Accepted: March 21, 2000  相似文献   

2.
The family B DNA polymerase gene from the archaeon Thermococcus marinus (Tma) contains a long open reading frame of 3,939 bp that encodes 1,312 amino acid residues. The gene is split by one intervening sequence that forms a continuous open reading frame with the two polymerase exteins. In this study, the Tma DNA polymerase gene both with (precursor form) and without (mature form) its intein was expressed in Escherichia coli, purified by heat treatment and HiTrap™ Heparin HP column chromatography and characterized. Primary sequence analysis of the mature Tma polymerase showed high sequence identity with DNA polymerases in the genus Thermococcus. The expressed precursor form was easily spliced during purification steps. The molecular mass of the purified Tma DNA polymerases is about 90 kDa, as estimated by SDS-PAGE. Both Tma DNA polymerases showed the same properties. PCR performed with this enzyme was found to be optimal in the presence of 50 mM Tris–HCl (pH 8.4), 40 mM KCl, 12.5 mM (NH4)2SO4, 2 mM MgCl2, 0.05% Triton X-100 and 0.0075% BSA. Furthermore, long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tma DNA polymerases (Tma plus DNA polymerase).  相似文献   

3.
The recently discovered hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans is of great interest to compare and contrast the impact of its physiology on radioresistance and its ability to repair damaged chromosomes after exposure to gamma irradiation with radioresistant bacteria. We showed that, in contrast to other organisms, cell survival was not modified by the cellular growth phase under optimal growth conditions but nutrient-limited conditions did affect the T. gammatolerans radioresistance. We determined the first kinetics of damaged DNA recovery in an archaeon after exposure to massive doses of gamma irradiation and compared the efficiency of chromosomal DNA repair according to the cellular growth phase, nutrient availability and culture conditions. Chromosomal DNA repair kinetics showed that stationary phase cells reconstitute disrupted chromosomes more rapidly than exponential phase cells. Our data also revealed that this radioresistant archaeon was proficient to reconstitute shattered chromosomes either slowly or rapidly without any loss of viability. These results suggest that rapid DNA repair is not required for the extreme radioresistance of T. gammatolerans. Angels Tapias and Christophe Leplat contributed equally to this work.  相似文献   

4.
An extremely thermophilic, sulfur-dependent archaeon, strain WT1, was isolated from a freshwater hot spring in the Lake Taupo area of North Island, New Zealand. The cells are flagellated, strictly anaerobic cocci that grow optimally at 85 °C and 5.4 g NaCl l–1. The strain grows heterotrophically on complex proteinaceous substrates or on appropriate salts plus amino acid mixtures and is also able to utilize maltose, starch, and pyruvate. Elemental sulfur could be replaced by cystine or thioglycollate. The range of temperatures allowing growth is from 60 to 90 °C; the pH supporting growth ranges from 5 to 8 (optimum, pH 7). Strain WT1 grew in a defined medium containing amino acids as the sole carbon and energy sources. The required amino acids were: Arg, His, Ile, Leu, Phe, Ser, Thr, Trp, Tyr, and Val. Strain WT1 showed sensitivity to rifampicin. DNA G+C content was 50.4 mol%. Phylogenetic analysis of the sequence encoding the 16S rRNA gene indicated that this isolate is a member of the Thermococcales. DNA/DNA hybridization studies revealed no similarity to several species of Thermococcus and Pyrococcus, with the exception of Thermococcus zilligii. Based on the reported results, we propose strain WT1 as a new species to be named Thermococcus waiotapuensis sp. nov. Received: 5 January 1999 / Accepted: 19 May 1999  相似文献   

5.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed an ORF of 1689 bases encoding 562 amino acids that showed a high similarity to DNA ligases from other hyperthermophilic archaea. The ligase, which was designated TNA1_lig (Thermococcus sp. NA1 ligase), was cloned and expressed in Escherichia coli. The recombinant TNA1_lig was purified by metal affinity chromatography. The optimum ligase activity of the recombinant TNA1_lig occurred at 80 °C and pH 7.5. The enzyme was activated by MgCl2 and ZnCl2 but was inhibited by MnCl2 and NiCl2. Additionally, the enzyme was activated by either ATP or NAD+. Revisions requested 27 October 2005; Revisions received 14 December 2005  相似文献   

6.
A novel coccoid-shaped, hyperthermophilic, anaerobic archaeon, strain RG-20, was isolated from a deep-sea hydrothermal vent fluid sample taken at 1394-m depth at the Mid-Okinawa Trough (27°32.7′N, 126°58.5′E). Cells of this isolate occur singly or in pairs and are about 0.8 to 2 μm in diameter. Growth was observed at temperatures between 50° and 93°C, with an optimum at 85°C. The pH range for growth is 5.0–9.0, with an optimum around 7.0. Strain RG-20 requires 1%–4% of NaCl for growth, and cell lysis occurs at concentrations below 1%. The newly isolated strain grows preferentially in the presence of elemental sulfur on proteinaceous substrates such as yeast extract, peptone, or tryptone, and no growth was observed on carbohydrates, carboxylic acids, alcohols, or lipids. This microorganism is resistant to streptomycin, chloramphenicol, ampicillin, and kanamycin at concentrations up to 150 μg/ml, but is susceptible to rifampicin. Analysis of the hydrolyzed core lipids by thin-layer chromatography (TLC) revealed the presence of archaeol and caldarchaeol. The mol% G+C content of the DNA is 55.8. Partial sequencing of the 16S rDNA indicates that strain RG-20 belongs to the genus Thermococcus. Considering these data and on the basis of the results from DNA-DNA hybridization studies, we propose that this strain should be classified as a new species named Thermococcus siculi (si′cu.li. L. gen. n. siculi, of the deep-sea [siculum, deep-sea in literature of Ovid], referring to the location of the sample site, a deep-sea hydrothermal vent). The type strain is isolate RG-20 (DSM No. 12349). Received: May 11, 1998 / Accepted: July 24, 1998  相似文献   

7.
From a hydrothermal vent site off the Mexican west coast (20°50′N, 109°06′W) at a depth of 2,600 m, a novel, hyperthermophilic, anaerobic archaeum was isolated. Cells were round to slightly irregular cocci, 1.2–2.5 μm in diameter and were motile by means of a tuft of flagella. The new isolate grew between 60 and 93°C (optimum: 85°C), from pH 3.5 to 9 (optimum: pH 6.7), and from 0.8 to 8% NaCl (optimum: 2%). The isolate was an obligate organotroph, using chitin, yeast extract, meat extract, and peptone for growth. Chitin was fermented to H2, CO2, NH3, acetate, and formate. H2S was formed in the presence of sulfur. The chitinoclastic enzyme system was oxygen-stable, cell-associated, and inducible by chitin. The cell wall was composed of a surface layer of hex- americ protein complexes arranged on a p6 lattice. The core lipids consisted of glycerol diphytanyl diethers and acyclic and cyclic glycerol diphytanyl tetraethers. The G+C content was 46.5 mol%. DNA/DNA hybridization and 16S rRNA sequencing indicated that the new isolate belongs to the genus Thermococcus, representing a new species, Thermococcus chitonophagus. The type strain is isolate GC74, DSM 10152. Received: 8 May 1995 / Accepted: 26 June 1995  相似文献   

8.
In most organisms, DNA replication is initiated by DNA primases, which synthesize primers that are elongated by DNA polymerases. In this study, we describe the isolation and biochemical characterization of the DNA primase complex and its subunits from the archaeon Thermococcus kodakaraensis. The T. kodakaraensis DNA primase complex is a heterodimer containing stoichiometric levels of the p41 and p46 subunits. The catalytic activity of the complex resides within the p41 subunit. We show that the complex supports both DNA and RNA synthesis, whereas the p41 subunit alone marginally produces RNA and synthesizes DNA chains that are longer than those formed by the complex. We report that the T. kodakaraensis primase complex preferentially interacts with dNTP rather than ribonucleoside triphosphates and initiates RNA as well as DNA chains de novo. The latter findings indicate that the archaeal primase complex, in contrast to the eukaryote homolog, can initiate DNA chain synthesis in the absence of ribonucleoside triphosphates. DNA primers formed by the archaeal complex can be elongated extensively by the T. kodakaraensis DNA polymerase (Pol) B, whereas DNA primers formed by the p41 catalytic subunit alone were not. Supplementation of reactions containing the p41 subunit with the p46 subunit leads to PolB-catalyzed DNA synthesis. We also established a rolling circle reaction using a primed 200-nucleotide circle as the substrate. In the presence of the T. kodakaraensis minichromosome maintenance (MCM) 3' → 5' DNA helicase, PolB, replication factor C, and proliferating cell nuclear antigen, long leading strands (>10 kb) are produced. Supplementation of such reactions with the DNA primase complex supported lagging strand formation as well.  相似文献   

9.
During purification of the native alpha-like DNA polymerase from the hyperthermophilic euryarchaeote Thermococcus fumicolans, two activity peaks were detected after cation-exchange chromatography. One of the peaks (Ppol) was identified as the T. fumicolans DNA polymerase and the second peak (Pf) was shown to contain a factor which increased the DNA polymerase activity over 70-fold when tested with activated calf thymus DNA as substrate. The factor also stimulated nucleotide incorporation when using primed lambda DNA as substrate (approximately 8-fold), while inducing a very large decrease in the turnover rate of the enzyme. The factor, therefore, maximizes the ability of the DNA polymerase to synthesize small fragments, which is compatible with DNA repair or lagging strand DNA replication.  相似文献   

10.
Two extremely thermophilic archaebacteria, strains OG-1 and SM-2, were isolated from newly discovered deep-sea hydrothermal vent areas in the western Pacific ocean. These strains were cocci, obligately anaerobic Archaea about 0.7–2 μm in diameter. Optimum growth conditions for OG-1 and SM-2 were at 85–90°C (range 60–100°C), pH 6 (range pH 4–8), a NaCl concentration of 3% (range 1–5%), and a nutrient concentration (tryptone plus yeast extract) of 0.2% (range 0.005–5%). Elemental sulfur stimulated the growth rate fourfold. Ammonium slightly stimulated growth. Both tryptone and yeast extract allowed growth as sole carbon sources; these isolates were not able to utilize or grow exclusively on sucrose, glucose, maltose, succinate, pyruvate, propionate, acetate, or free amino acids. OG-1 showed the fastest growth rate within the genus Thermococcus. Growth was inhibited by rifampicin. The DNA G+C content was 52 mol%. Sequencing of their 16S rDNA gene fragment indicated that these isolates belonged to the genus Thermococcus. OG-1 and SM-2 were different than the described Thermococcus species. We propose that OG-1 belongs to a new species: Thermococcus peptonophilus. Received: 8 March 1995 / Accepted: 24 May 1995  相似文献   

11.
We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid Mth ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (Km 1.1 µM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD+ cannot. Mth ligase activity is thermophilic in vitro, with optimal nick-joining at 60°C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase–adenylate intermediate (step 1) and hence cannot seal a 3′-OH/5′-PO4 nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase–adenylate formation, but defective in activating the nick via formation of the DNA–adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA–adenylate, could be elicited for the wild-type Mth ligase by inclusion of calcium as the divalent cation cofactor. Mth ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that Mth ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.  相似文献   

12.
The Tk-ptp gene encoding a protein tyrosine phosphatase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 was cloned and biochemical characteristics of the recombinant protein (Tk-PTP) were examined. A series of mutants, D63A (replacing Asp-63 with Ala), C93S, C93A, R99K, and R99M, were also constructed and analyzed. Two unique features were found. First, the Tk-PTP showed the phosphatase activity not only toward phosphotyrosine but also toward phosphoserine. Second, the conserved Asp-63, which corresponds to a critical residue among other known PTPs, was not essential for catalysis. Cys-93 and Arg-99 residues played a crucial role in substrate binding and catalysis. To know a specific substrate for Tk-PTP, C93S mutant was used to trap substrate proteins from cell extract of KOD1. Phenylalanyl-tRNA synthetase subunit beta-chain, one of the gene products of RNA terminal phosphate cyclase operon and phosphomannomutase, was identified, suggesting that they functioned for phosphate donation.  相似文献   

13.
Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate.  相似文献   

14.
15.
From a shallow marine hydrothermal system at Vulcano (Italy), a new hyperthermophilic member of the Archaea was isolated. The cells are coccoid – shaped and possess up to five flagella. They grow between 56° and 93°C (optimum 85°C) and pH 5.0–9.5 (optimum 9.0). The organism is strictly anaerobic and grows heterotrophically on defined amino acids and complex organic substrates such as casamino acids, yeast extract, peptone, meat extract, tryptone, and casein. Polysulfide and elemental sulfur are reduced to H2S. In the absence of polysulfide or elemental sulfur, the isolate grows at a significantly reduced rate. Growth is not influenced by the presence of H2. DNA–DNA hybridization and 16S rRNA partial sequences indicated that the new isolate belongs to the genus Thermococcus, and represents a new species, Thermococcus acidaminovorans. The type strain is isolate AEDII10 (DSM 11906). Received: September 24, 1997 / Accepted: January 1, 1998  相似文献   

16.
Enzymatic and thermodynamic characteristics of type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (Tk-IDI) from Thermococcus kodakaraensis, which catalyzes the interconversion of IPP and DMAPP, were examined. FMN was tightly bound to Tk-IDI, and the enzyme required NADPH and Mg2+ for the isomerization in both directions. The melting temperature (Tm), the change of enthalpy (deltaH(m)), and the heat capacity change (deltaC(p)) of Tk-IDI were 88.0 degrees C, 444 kJ mol(-1), and 13.2 kJ mol(-1) K(-1), respectively, indicating that Tk-IDI is fairly thermostable. Kinetic parameters dramatically changed when the temperature crossed 80 degrees C even though its native overall structure was stably maintained up to 90 degrees C, suggesting that local conformational change would occur around 80 degrees C. This speculation was supported by the result of the circular dichroism analysis that showed the shift of the alpha-helical content occurred at 80 degrees C.  相似文献   

17.
Long/branched-chain polyamines are unique polycations found in thermophiles. The hyperthermophilic archaeon Thermococcus kodakarensis contains spermidine and a branched-chain polyamine, N4-bis(aminopropyl)spermidine, as major polyamines. The metabolic pathways associated with branched-chain polyamines remain unknown. Here, we used gas chromatography and liquid chromatography-tandem mass spectrometry analyses to identify a new acetylated polyamine, N4-bis(aminopropyl)-N1-acetylspermidine, from T. kodakarensis; this polyamine was not found in other micro-organisms. The amounts of branched-chain polyamine and its acetylated form increased with temperature, indicating that branched-chain polyamines are important for growth at higher temperatures. The amount of quaternary acetylated polyamine produced was associated with the amount of N4-bis(aminopropyl)spermidine in the cell. The ratio of acetylated to non-acetylated forms was higher in the stationary phase than in the logarithmic growth phase under high-temperature stress condition.  相似文献   

18.
Thermococcus litoralis , a hyperthermophilic Archaeon, is able to reduce elemental sulfur during fermentative growth. An unusual gene cluster ( nsoABCD ) was identified in this organism. In silico analysis suggested that three of the genes ( nsoABC ) probably originated from Eubacteria and one gene ( nsoD ) from Archaea. The putative NsoA and NsoB are similar to NuoE- and NuoF-type electron transfer proteins, respectively. NsoC has a unique domain structure and contains a GltD domain, characteristic of glutamate synthase small subunits, which seems to be integrated into a NuoG-type sequence. Flavin and NAD(P)H binding sites and conserved cysteines forming iron–sulfur clusters binding motifs were identified in the protein sequences deduced. The purified recombinant NsoC contains one FAD cofactor per protein molecule and catalyzes the reduction of polysulfide with NADPH as an electron donor and it also reduces oxygen. It was concluded that the Nso complex is a new type of NADPH-oxidizing enzyme using sulfur and/or oxygen as an electron acceptor.  相似文献   

19.
20.
A hyperthermophilic, anaerobic archaeon was isolated from hydrothermal fluid samples obtained at the Okinawa Trough vents in the NE Pacific Ocean, at a depth of 1395 m. The strain is obligately heterotrophic, and utilizes complex proteinaceous media (peptone, tryptone, or yeast extract), or a 21-amino-acid mixture supplemented with vitamins, as growth substrates. Sulfur greatly enhances growth. The cells are irregular cocci with a tuft of flagella, growing optimally at 98°C (maximum growth temperature 102°C), but capable of prolonged survival at 105°C. Optimum growth was at pH 7 (range 5–8) and NaCl concentration 2.4% (range 1%–5%). Tryptophan was required for growth, in contrast to the closely related strains Pyrococcus furiosus and P. abyssi. Thin sections of the cell, viewed by transmission electron microscopy, revealed a periplasmic space similar in appearance to the envelope of P. furiosus. The predominant cell membrane component was tetraether lipid, with minor amounts of diether lipids. Treatment of the cells by mild osmotic shock released an extract that contained a Zn2+-dependent alkaline phosphatase. Phylogenetic analysis of the sequences encoding 16S rRNA and glutamate dehydrogenase places the isolate with certainty within the genus Pyrococcus although there is relatively low DNA–DNA hybridization (<63%) with described species of this genus. Based on the reported results, we propose a new species, to be named Pyrococcus horikoshii sp. nov. Received: December 10, 1997 / Accepted: February 4, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号