首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ovarian cancer (OC) is the one of the most common cancer in women globally. However, it still represents the most dangerous gynecologic malignancy even with the advances in detection and therapeutics. Thus, there is an urgent need in finding more effective therapeutic options for OC patients including cancer stem cells (CSC). MicroRNAs (miRNAs) are small, endogenous, and non-coding RNAs that play critical roles in the progression of various types of tumor. Our aim of this study was to find the regulatory function of microRNA-26 (miRNA- 26b) on the cell proliferation and apoptosis of ovarian CSCs. Our studies show that miR-26b is under-regulated in human CD117+CD44+ ovarian CSCs. The miR-26b overexpression inhibits the cell proliferation and promotes cell apoptosis. Moreover, phosphatase and tensin homolog (PTEN) is found to be a functional target of miR-26b. Moreover, PTEN overexpression reversed the effects of miR-26b on cell proliferation and apoptosis. PTEN overexpression remarkably accelerated cell proliferation, and inhibited cell apoptosis. These results indicate that MiR-26b regulates cell proliferation and apoptosis of CD117+CD44+ ovarian CSCs by targeting PTEN.Key words: miR-26b, PTEN, ovarian cancer stem cells (CSCs), cell proliferation, apoptosis  相似文献   

2.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with limited treatment options. To guide the design of more effective immunotherapy strategies, mass cytometry was employed to characterize the cellular composition of the PDAC-infiltrating immune cells. The expression of 33 protein markers was examined at the single-cell level in more than two million immune cells from four types of clinical samples, including PDAC tumors, normal pancreatic tissues, chronic pancreatitis tissues, and peripheral blood. Based on the analyses, we identified 23 distinct T-cell phenotypes, with some cell clusters exhibiting aberrant frequencies in the tumors. Programmed cell death protein 1 (PD-1) was extensively expressed in CD4+ and CD8+ T cells and coexpressed with both stimulatory and inhibitory immune markers. In addition, we observed elevated levels of functional markers, such as CD137L and CD69, in PDAC-infiltrating immune cells. Moreover, the combination of PD-1 and CD8 was used to stratify PDAC tumors from The Cancer Genome Atlas database into three immune subtypes, with S1 (PD-1+CD8+) exhibiting the best prognosis. Further analysis suggested distinct molecular mechanisms for immune exclusion in different subtypes. Taken together, the single-cell protein expression data depicted a detailed cell atlas of the PDAC-infiltrating immune cells and revealed clinically relevant information regarding useful cell phenotypes and targets for immunotherapy development.  相似文献   

3.
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functional roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na+/H+ exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-κB ligand signaling and is required for OC differentiation and survival.  相似文献   

4.
The cancer stem cell (CSC) model depicts that tumors are hierarchically organized and maintained by CSCs lying at the apex. CSCs have been “identified” in a variety of tumors through the tumor-forming assay, in which tumor cells distinguished by a certain cell surface marker (known as a CSC marker) were separately transplanted into immunodeficient mice. In such assays, tumor cells positive but not negative for the CSC marker (hereby defined as CSC+ and CSC cells, respectively) have the ability of tumor-forming and generating both progenies. However, here we show that CSC+ and CSC cells exhibit similar proliferation in the native states. Using a cell tracing method, we demonstrate that CSC cells exhibit similar tumorigenesis and proliferation as CSC+ cells when they were co-transplanted into immunodeficient mice. Through serial single-cell derived subline construction, we further demonstrated that CSC+ and CSC cells from CSC marker expressing tumors could invariably generate both progenies, and their characteristics are maintained among different generations irrespective of the origins (CSC+-derived or CSC-derived). These findings demonstrate that tumorigenic cells cannot be distinguished by common CSC markers alone and we propose that cautions should be taken when using these markers independently to identify cancer stem cells due to the phenotypic plasticity of tumor cells.  相似文献   

5.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

6.
ObjectivesTo study the role of secreted phospholipase A2 (sPLA2) in the pathophysiology of human osteoclasts (OCs).MethodsImmunohistochemistry and sPLA2 inhibitors were to determine the localization of sPLA2 and its role in OCs biology.ResultssPLA2 is expressed by OCs from healthy fetal bone and OCs from Paget's disease but not in normal bone. Inhibition of sPLA2 greatly reduces in vitro osteoclastogenesis.DiscussionThe decrease in OCs formed could be attributed to a decline in the viability of CD14+ OC precursors as well as a reduced viability of mature OCs. Inhibition of sPLA2 strongly decreases bone resorption by OCs independently of actin cytoskeleton remodeling, probably also by reducing OCs viability.ConclusionHigh amounts of this enzyme are present in fetal and Pagetic bone samples. Inhibition of sPLA2 in vitro decreases osteoclastogenesis and OC activity and might constitute an interesting pharmacologic target for diseases with high bone turnover.  相似文献   

7.
8.
9.
吴丽芳  魏晓梅 《广西植物》2019,39(8):1107-1114
该研究以蔗糖、麦芽糖、山梨醇及PEG(6000)为渗透剂,探讨了不同渗透剂对白刺花体细胞胚发育、胚成熟及萌发的影响。结果表明:白刺花下胚轴形成的胚性愈伤组织接种至MS+2,4-D 0.2 mg·L~(-1)+NAA 1.0 mg·L~(-1)+6-BA 2.0 mg·L~(-1)+TDZ 1.0 mg·L~(-1)+蔗糖40 g·L~(-1)+谷氨酰胺100 mg·L~(-1)+植物凝胶3g·L~(-1)的培养基上,体细胞胚发生率高达66. 21%,总胚数为79个; 7%蔗糖可使体细胞胚成熟率高达64.36%,同时也可提高多子叶畸形胚形成; 2%麦芽糖+2%山梨醇+4%蔗糖组合使体细胞胚成熟率最高达88.89%,畸形胚比例最低; 30 g·L~(-1)PEG培养时,体细胞成熟率最高,为82.35%;鱼雷期的体细胞胚最合适转接,可使体胚萌发率达90.58%,复合糖上培养得到的成熟体细胞胚生根率最高,为87.47%。这为实现白刺花体细胞胚育苗奠定了理论基础,并提供了可行的方案。  相似文献   

10.
BACKGROUND: Androgen receptor (AR) has emerged as a significant prognostic marker in early breast cancer (BCa). Association of AR with cancer stem cell (CSC) markers in BCa is unknown. Aim of the present study was to evaluate the immunohistochemical expression of AR, CD44, CD24 and ALDH1 in a cohort of Pakistani patients diagnosed with invasive BCa and to correlate the expression with 5- year disease free survival. PATIENTS AND METHODS: We evaluated immunohistochemical expression AR, CD44, CD24 and ALDH1 in formalin fixed paraffin embedded archival blocks of 166 cases of primary invasive BCa (stage I-III) and correlated the expression with clinicopathological variables and outcome using univariable and multivariable analysis. Survival data was computed by Kaplan Meier curves. RESULTS: Expression of AR was observed in 62.7% tumors whereas CD44, CD24 and ALDH1 were expressed in 61.4%, 44% and 30.1% tumors, respectively. AR expression was significantly associated with T1-T2 tumors, lower grade, estrogen and progesterone receptor expression (P < .05) and remained an independent prognostic indicator in multivariable analysis (adjusted HR 0.33, 95% CI 0.13–0.81; P = .016). Significant association was observed between concordant expression of AR and CD24 (P = .001) with a favorable impact on survival (P = .007) whereas expression of CSC phenotypes (CD44+, CD44+/CD24? and ALDH1+) did not correlate with adverse outcome (P > .05). However, AR expression retained the association with better prognosis even in patients whose tumors exhibited a CSC phenotype. CONCLUSIONS: Expression of AR and CD24 in stage I-III invasive BCa correlates with favorable clinicopathological features and delineates a subgroup of patients with better disease-free survival.  相似文献   

11.
Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of “supercell statistics”, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet''s disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet''s disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.  相似文献   

12.
IntroductionComplex outcome of ovarian cancer (OC) stems from the tumor immune microenvironment (TIME) influenced by genetic and epigenetic factors. This study aimed to comprehensively explored the subclasses of OC through lncRNAs related to both N6-methyladenosine (m6A)/N1-methyladenosine (m1A)/N7-methylguanosine (m7G)/5-methylcytosine (m5C) in terms of epigenetic variability and immune molecules and develop a new set of risk predictive systems.Material and methodsThe lncRNA data of OC were collected from TCGA. Spearman correlation analysis on lncRNA data of OC with immune-related gene expression and with m6A/m5C/m1A/m7G were respectively conducted. The m6A/m5C/m1A/m7G-related m6A/m5C/m1A/m7G related immune lncRNA subtypes were identified on the basis of the prognostic lncRNAs. Heterogeneity among subtypes was evaluated by tumor mutation analysis, tumor microenvironment (TME) component analysis, response to immune checkpoint blocked (ICB) and chemotherapeutic drugs. A risk predictive system was developed based on the results of Cox regression analysis and random survival forest analysis of the differences between each specific cluster and other clusters.ResultsThree m6A/m5C/m1A/m7G-related immune lncRNA subtypes of OC showing distinct differences in prognosis, mutation pattern, TIME components, immunotherapy and chemotherapy response were identified. A set of risk predictive system consisting of 10 lncRNA for OC was developed, according to which the risk score of samples in each OC dataset was calculated and risk type was defined.ConclusionsThis study classified three m6A/m5C/m1A/m7G-related immune lncRNA subtypes with distinct heterogeneous mutation patterns, TME components, ICB therapy and immune response, and provided a set of risk predictive system consisted of 10 lncRNA for OC.  相似文献   

13.
Glioblastoma multiforme (GBM) is paradigmatic for the investigation of cancer stem cells (CSC) in solid tumors. The CSC hypothesis implies that tumors are maintained by a rare subpopulation of CSC that gives rise to rapidly proliferating progenitor cells. Although the presence of progenitor cells is crucial for the CSC hypothesis, progenitor cells derived from GBM CSC are yet uncharacterized. We analyzed human CD133+ CSC lines that were directly derived from CD133+ primary astrocytic GBM. In these CSC lines, CD133+/telomerasehigh CSC give rise to non-tumorigenic, CD133/telomeraselow progenitor cells. The proliferation of the progenitor cell population results in significant telomere shortening as compared to the CD133+ compartment comprising CSC. The average difference in telomere length as determined by a modified multi-color flow fluorescent in situ hybridization was 320 bp corresponding to 4–8 cell divisions. Taken together, we demonstrate that CD133+ primary astrocytic GBM comprise proliferating, CD133/telomeraselow progenitor cell population characterized by low telomerase activity and shortened telomeres as compared to CSC.  相似文献   

14.
Background: Reliable prognostic indicators for accurately predicting postoperative outcomes in Hepatocellular carcinoma (HCC) patients are lacking. Although cancer stem-like cells (CSCs) and tumor-associated macrophages (TAMs) in tumor microenvironment are implicated in the occurrence and development of HCC, whether the combination of CSC biomarkers and TAM populations could achieve better performance in predicting the prognosis of patients with HCC has been rarely reported.Methods: A total of 306 HCC patients were randomly divided into the training and validation cohorts at a 1:1 ratio, and the expression of OV6 and CD68 was assessed using immunohistochemistry in HCC samples. The prognostic value of these biomarkers for post-surgical survival and recurrence were evaluated by the curve of receiver operating characteristic and multivariate Cox regression analyses.Results: The density of OV6+ CSCs was positively correlated with the infiltration of CD68+ TAMs in HCC. Both high OV6 expression and CD68+ TAM infiltration was closely associated with poor overall survival (OS) and progression-free survival (PFS) of HCC patients. Moreover, overexpression of OV6 and infiltration of CD68+ TAMs were identified as independent prognostic factors for OS and PFS after liver resection. The integration of OV6 and CD68 with tumor size and microvascular invasion exhibited highest C-index value for survival predictivity in HCC patients than any other biomarkers or clinical indicators alone.Conclusion: Incorporating intratumoral OV6 expression and CD68+ TAMs infiltration with established clinical indicators may serve as a promising prognostic signature for HCC, and could more accurately predict the clinical outcomes for HCC patients after liver resection.  相似文献   

15.
16.

Background

Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages.

Methods

We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay.

Results

Multiple IFN-γ–stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques.

Discussion

This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.  相似文献   

17.
A major burden in the treatment of ovarian cancer is the high percentage of recurrence and chemoresistance. Cancer stem cells (CSCs) provide a reservoir of cells that can self-renew, can maintain the tumor by generating differentiated cells [non-stem cells (non-CSCs)] which make up the bulk of the tumor and may be the primary source of recurrence. We describe the characterization of human ovarian cancer stem cells (OCSCs). These cells have a distinctive genetic profile that confers them with the capacity to recapitulate the original tumor, proliferate with chemotherapy, and promote recurrence. CSC identified in EOC cells isolated form ascites and solid tumors are characterized by: CD44+, MyD88+, constitutive NFκB activity and cytokine and chemokine production, high capacity for repair, chemoresistance to conventional chemotherapies, resistance to TNFα-mediated apoptosis, capacity to form spheroids in suspension, and the ability to recapitulate in vivo the original tumor.

Chemotherapy eliminates the bulk of the tumor but it leaves a core of cancer cells with high capacity for repair and renewal. The molecular properties identified in these cells may explain some of the unique characteristics of CSCs that control self-renewal and drive metastasis. The identification and cloning of human OCSCs can aid in the development of better therapeutic approaches for ovarian cancer patients.  相似文献   

18.
In long-lived species, any negative effect of pollution on adult survival may pose serious hazards to breeding populations. In this study, we measured concentrations of various organochlorines (OCs) (polychlorinated biphenyl and OC pesticides) in the blood of a large number of adult glaucous gulls (Larus hyperboreus) breeding on Bjørnøya (Bear Island) in the Norwegian Arctic, and modelled their local survival using capture–recapture analysis. Survival was negatively associated with concentrations of OCs in the blood. The effect of OCs was nonlinear and evident only among birds with the highest concentrations (the uppermost deciles of contamination). The threshold for depressed survival differed between the sexes, with females being more sensitive to contamination. For birds with lower OC concentration, survival was very high, i.e. at the upper range of survival rates reported from glaucous and other large gull species in other, presumably less contaminated populations. We propose two non-exclusive explanations. First, at some threshold of OC concentration, parents (especially males) may abandon reproduction to maximize their own survival. Second, high contamination of OC may eliminate the most sensitive individuals from the population (especially among females), inducing a strong selection towards high-quality and less sensitive phenotypes.  相似文献   

19.
20.
Cancer stem cell (CSC) cluster of triple-negative breast cancer (TNBC) is suggested to be responsible for therapy resistance, metastatic process and cancer recurrence, yet the sensitivity of CSC clusters of TNBC to ferroptosis remains elusive in a great measure. Current research revealed that epidermal growth factor receptor (EGFR) reinforced CD44-mediated TNBC cell clustering, whether blockade of EGFR has synergistic effects on erastin-induced tumor inhibition of CSC clusters is still poorly understood. Here, we found that fraction of CD24lowCD44high cells and size of tumor spheres clearly decreased following EGFR inhibition in TNBC cells. Inhibition of EGFR promoted expression of LC3B-II via YAP/mTOR signaling pathway, indicating that EGFR-mediated autophagy which contributed to ferroptosis. In order to further verify the protective effects of EGFR on ferroptosis induced by small molecules in TNBC cells, pseudolaric acid B (PAB) which led to ferroptosis of malignant cells was selected. In our experiment, lapatinib and PAB cotreatment inhibited TNBC cells viability and restrained formation of tumor spheres, accompanied with a high level of intracellular ROS. To target delivery lapatinib and PAB to TNBC cells, lapatinib/PAB@Ferritin (L/P@Ferritin) nanoparticles were prepared; results of in vitro and in vivo showed a higher tumor suppression efficiency of L/P@Ferritin, highlighting that it might provide a new perspective for treatment of CSC clusters of TNBC.Subject terms: Breast cancer, Cancer stem cells, Cancer therapy, Drug delivery  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号