首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
BackgroundPreoperative counseling may reduce postoperative opioid requirements; however, there is a paucity of randomized controlled trials (RCTs) demonstrating efficacy. The purpose of this study was to perform an interventional, telehealth-based RCT evaluating the effect of peri-operative counseling on quantity and duration of opioid consumption following primary total joint arthroplasty (TJA).MethodsParticipants were randomized into three groups: 1. Control group, no perioperative counseling; 2. Intervention group, preoperative educational video; 3. Intervention group, preoperative educational video and postoperative acceptance and commitment therapy (ACT). Opioid consumption was evaluated daily for 14 days and at 6 weeks postoperatively. Best-case and worse-case intention to treat analyses were performed to account for non-responses. Bonferroni corrections were applied.Results183 participants were analyzed (63 in Group 1, 55 in Group 2, and 65 in Group 3). At 2 weeks postoperatively, there was no difference in opioid consumption between Groups 1, 2, and 3 (p>0.05 for all). At 6 weeks postoperatively, Groups 2 and 3 had consumed significantly less opioids than Group 1 (p=0.04, p<0.001) (
VariableGroupp-value
1. Control2. Video OnlyVideo + ACT
Sex (n, % female)39 (62%)32 (58%)40 (62%)0.90
Surgery (n, % THA)26 (41%)21 (38%)31 (47%)0.56
Age (mean ± SD; years)59 ± 1159 ± 1158 ± 9Overall: 0.83
1v2: 0.98
2v3: 0.65
2v3: 0.56
Prolonged Opioid Use > 60 mo. (n, %)000-
Opioid Use Within 3 mo. of Index Surgery (n, %)0 (14%)4 (7%)5 (8%)0.34
Open in a separate windowSD – standard deviation.Table 2.Quantity of Opioid Consumption at 2 Weeks Postoperatively, Best-Case Scenario
ValueGroupp-valuep-value (corrected)
1. Control2. Video OnlyVideo + ACT
Median192113901v2: 0.281v2: 0.56
IQR60-3088-30815-2481v3: 0.04*1v3: 0.15
Min0002v3: 0.472v3: 0.56
Max690623694
Open in a separate windowMedian, interquartile range (IQR), minimum (min), and maximum (max) values are reported in morphine milliequivalents (MME). * denotes statistical significance.ConclusionPerioperative opioid counseling significantly decreases the quantity and duration of opioid consumption at 6 weeks following primary TJA. Level of Evidence: I  相似文献   

2.
Diminished Susceptibility to Cefoperazone/Sulbactam and Piperacillin/Tazobactam in Enterobacteriaceae Due to Narrow-Spectrum β-Lactamases as Well as Omp Mutation     
Fengzhen Yang  Qi Zhao  Lipeng Wang  Jinying Wu  Lihua Jiang  Li Sheng  Leyan Zhang  Zhaoping Xue  Maoli Yi 《Polish journal of microbiology》2022,71(2):251
Cefoperazone/sulbactam (CSL) and piperacillin/tazobactam (TZP) are commonly used in clinical practice in China because of their excellent antimicrobial activity. CSL and TZP-nonsusceptible Enterobacteriaceae are typically resistant to extended-spectrum cephalosporins such as ceftriaxone (CRO). However, 11 nonrepetitive Enterobacteriaceae strains, which were resistant to CSL and TZP yet susceptible to CRO, were collected from January to December 2020. Antibiotic susceptibility tests and whole-genome sequencing were conducted to elucidate the mechanism for this rare phenotype. Antibiotic susceptibility tests showed that all isolates were amoxicillin/clavulanic-acid resistant and sensitive to ceftazidime, cefepime, cefepime/tazobactam, cefepime/zidebactam, ceftazidime/avibactam, and ceftolozane/tazobactam. Whole-genome sequencing revealed three of seven Klebsiella pneumoniae strains harbored blaSHV-1 only, and four harbored blaSHV-1 and blaTEM-1B. Two Escherichia coli strains carried blaTEM-1B only, while two Klebsiella oxytoca isolates harbored blaOXY-1-3 and blaOXY-1-1, respectively. No mutation in the β-lactamase gene and promoter sequence was found. Outer membrane protein (Omp) gene detection revealed that numerous missense mutations of OmpK36 and OmpK37 were found in all strains of K. pneumoniae. Numerous missense mutations of OmpK36 and OmpK35 and OmpK37 deficiency were found in one K. oxytoca strain, and no OmpK gene was found in the other. No Omp mutations were found in E. coli isolates. These results indicated that narrow spectrum β-lactamases, TEM-1, SHV-1, and OXY-1, alone or in combination with Omp mutation, contributed to the resistance to CSL and TZP in CRO-susceptible Enterobacteriaceae.Antibiotic susceptibility tests
AntibioticsBreakpoint, (μg/ml)Klebsiella pneumoniae
Escherichia cou
Klebriehd axyoca
E1E3E4E7E9E10E11E6E8E2E5
CRO≤1≥4≤0.5≤0.5≤0.5≤0.5 1≤0.51≤0.5≤0.511
CAZ4 ≥161214444241 1
FEP≤2 216 110.2512220.521 1
AMC≤8 ≥32≥128≥128≥128≥128≥128≥128≥128≥128≥128≥128≥128
CSL≤16 ≥6464646464≥128128≥12864128128≥128
TZP≤16 ≥128≥256≥256≥256≥25622562256≥256≥256≥256≥256≥256
FPT≤2 ≥1610.50.060.1252120.2510.1250.25
FPZ≤2 2160.250.250.060.1250.250.25 10.1250.250.1250.125
CZA≤8 216 10.50.250.2510.2510.50.50.50.25
CZT≤2 28210.5 1222 1122
Open in a separate windowCROceftriaxone, CAZceftazidime, FEPcefepime, AMC:amoxicillin clavulanic-acid, CSLcefoperazone/sulbactam, TZP:piperadllin/tazobactam, FPT:cefepime tazobactam, FPZ:cefepime/zidebactam, CZA:ceftazidime/avibactam, CZTceftolozane/tazobactam Gene sequencing results
NumberStrainSTp-Lactamase genePromoter sequence mutationOmp mutation
ElKpn45blaSHV-1, blaTEM-lBnoneOmpK36, OmpK3 7
E3Kpn45blaSHV-1, blaTEM-lBnoneOmpK36. OmpK3 7
E4Kpn2854blaSHV-1noneOmpK36, OmpK3 7
E7Kpn2358blaSHV-1 - blaTEM-lBnoneOmpK36, OmpK3 7
E9Kpn2358blaSHV-1. blaTEM-lBnoneOmpK36. OmpK3 7
E10Kpn 189blaSHV-1noneOmpK36. OmpK3 7
EllKpn45blaSHV-1noneOmpK36, OmpK3 7
E6Eco88blaTEM-lBnonenone
ESEco409blaTEM-1Bnonenone
E2Kox194blaOXY-1-3noneOmpK36 mutations. OmpK35 and OmpK 37 deficiency
E5Kox 11blaOXY-1-1noneno OmpK (OmpK3 5, OmpK36 and OmpK37) gene found
Open in a separate window  相似文献   

3.
Does an Eye-Hand Coordination Test Have Added Value as Part of Talent Identification in Table Tennis? A Validity and Reproducibility Study     
Irene R. Faber  Frits G. J. Oosterveld  Maria W. G. Nijhuis-Van der Sanden 《PloS one》2014,9(1)
This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7–12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the TotalNationalRegionalLocalTotal43131119Boys268810Girls17539Age (years)10.4±1.410.9±1.510.4±1.510.1±1.47 year olds1--18 year olds51139 year olds3-3-10 year olds1232711 year olds1151512 year olds11443Length (cm)149±11150±12150±12148±10Weight (kg )38±837±737±738±9Right-handed359917Left-handed8422Training (hours*week-1)6 (0–20)11 (7–20)7 (4–11)2 (0–3)Competition (points)173 (−52–430)297 (144–430)188 (72–317)36 (−52–130)Open in a separate windowData are frequencies, except for age, length and weight (years±SD), and training and competition (mean (range)).  相似文献   

4.
Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution     
Victoria Kasprowicz  Yu-Hoi Kang  Michaela Lucas  Julian Schulze zur Wiesch  Thomas Kuntzen  Vicki Fleming  Brian E. Nolan  Steven Longworth  Andrew Berical  Bertram Bengsch  Robert Thimme  Lia Lewis-Ximenez  Todd M. Allen  Arthur Y. Kim  Paul Klenerman  Georg M. Lauer 《Journal of virology》2010,84(3):1656-1663
Hepatitis C virus (HCV)-specific CD8+ T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127+ T cells is driven by viral variation.Hepatitis C virus (HCV) persists in the majority of acutely infected individuals, potentially leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The cellular immune response has been shown to play a significant role in viral control and protection from liver disease. Phenotypic and functional studies of virus-specific T cells have attempted to define the determinants of a successful versus an unsuccessful T-cell response in viral infections (10). So far these studies have failed to identify consistent distinguishing features between a T-cell response that results in self-limiting versus chronic HCV infection; similarly, the impact of viral persistence on HCV-specific memory T-cell formation is poorly understood.Interleukin-7 (IL-7) receptor alpha chain (CD127) is a key molecule associated with the maintenance of memory T-cell populations. Expression of CD127 on CD8 T cells is typically only observed when the respective antigen is controlled and in the presence of significant CD4+ T-cell help (9). Accordingly, cells specific for persistent viruses (e.g., HIV, cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) have been shown to express low levels of CD127 (6, 12, 14) and to be dependent on antigen restimulation for their maintenance. In contrast, T cells specific for acute resolving virus infections, such as influenza virus, respiratory syncytial virus (RSV), hepatitis B virus (HBV), and vaccinia virus typically acquire expression of CD127 rapidly with the control of viremia (5, 12, 14). Results for HCV have been inconclusive. The expected increase in CD127 levels in acute resolving but not acute persisting infection has been found, while a substantial proportion of cells with high CD127 expression have been observed in long-established chronic infection (2). We tried to reconcile these observations by studying both subjects with acute and chronic HCV infection and identified the presence of antigen as the determinant of CD127 expression.Using HLA-peptide multimers we analyzed CD8+ HCV-specific T-cell responses and CD127 expression levels in acute and chronic HCV infection. We assessed a cohort of 18 chronically infected subjects as well as 9 individuals with previously resolved infection. In addition, we longitudinally studied 9 acutely infected subjects (5 individuals who resolved infection spontaneously and 4 individuals who remain chronically infected) (Tables (Tables11 and and2).2). Informed consent in writing was obtained from each patient, and the study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval from the local institutional review boards. HLA-multimeric complexes were obtained commercially from Proimmune (Oxford, United Kingdom) and Beckman Coulter (CA). The staining and analysis procedure was as described previously (10). Peripheral blood mononuclear cells (PBMCs) were stained with the following antibodies: CD3 from Caltag; CD8, CD27, CCR7, CD127, and CD38 from BD Pharmingen; and PD-1 (kindly provided by Gordon Freeman). Primer sets were designed for different genotypes based on alignments of all available sequences from the public HCV database (http://hcvpub.ibcp.fr). Sequence analysis was performed as previously described (8).

TABLE 1.

Patient information and autologous sequence analysis for patients with chronic and resolved HCV infection
CodeGenotypeStatusEpitope(s) targetedSequencea
02-031bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
00-261bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
99-242aChronicA2 NS3 1073-1083P: CINGVCWTV
No recognitionA: S-S--L---
A2 NS3 1406-1415P: KLVALGINAV
No recognitionA: A-RGM-L---
A2 NS5B 2594-2602P: ALYDVVTKL
A: no sequence
1111aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
A2 NS5 2594-2602P: ALYDVVTKL
A: ---------
00X3aChronicA2 NS5 2594-2602P: ALYDVVTKL
No recognitionA: -----IQ--
O3Qb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03Sb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
02A1aChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
01N1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03H1aChronicA2 NS3 1073-1083P: CINGVCWTV
Full recognitionA: ----A----
01-391aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03-45b1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
06P3aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
GS127-11aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-61aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-81bChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-161aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-201aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
04D4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
01-49b1ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
A2 NS3 1406-1415P: KLVALGINAV
01-311ResolvedA1 NS3 1436-1444P: ATDALMTGY
B57 NS5 2629-2637P: KSKKTPMGF
04N1ResolvedA1 NS3 1436-1444P: ATDALMTGY
01E4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
98A1ResolvedA2 NS3 1073-1083P: CINGVCWTV
00-10c1ResolvedA24 NS4 1745-1754P: VIAPAVQTNW
O2Z1ResolvedA1 NS3 1436-1444P: ATDALMTGY
99-211ResolvedB7 CORE 41-49P: GPRLGVRAT
OOR1ResolvedB35 NS3 1359-1367P: HPNIEEVAL
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.bHIV coinfection.cHBV coinfection.

TABLE 2.

Patient information and autologous sequence analysis for patients with acute HCV infection
CodeGenotypeOutcomeEpitope targeted and time analyzedSequencea
5541aPersistingA2 NS3 1073-1083P: CINGVCWTV
wk 8A: ---------
wk 30A: ---------
03-321aPersistingB35 NS3 1359-1367P: HPNIEEVAL
wk 8A: ---------
No recognition (wk 36)A: S--------
04-111a (1st)Persisting (1st) Resolving (2nd)A2 NS5 2594-2602P: ALYDVVTKL
1b (2nd)A: no sequence
00231bPersistingA1 NS3 1436-1444P: ATDALMTGY
Diminished (wk 7)A: --------F
Diminished (wk 38)A: --------F
A2 NS3 1073-1083P: CINGVCWTV
wk 7A: ---------
wk 38A: ---------
A2 NS3 1406-1415P: KLVALGINAV
Full recognition (wk 7)A: --S-------
Full recognition (wk 38)A: --S-------
3201ResolvingA2 NS3 1273-1282P: GIDPNIRTGV
5991ResolvingA2 NS3 1073-1083P: CINGVCWTV
11441ResolvingA2 NS3 1073-1083P: CINGVCWTV
B35 NS3 1359-1367P: HPNIEEVAL
06L3aResolvingB7 CORE 41-49P: GPRLGVRAT
05Y1ResolvingA2 NS3 1073-1083P: CINGVCWTV
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.In established persistent infection, CD8+ T-cell responses against HCV are infrequently detected in blood using major histocompatibility complex (MHC) class I tetramers and are only observed in a small fraction of those sampled (10). We were able to examine the expression of CD127 on antigen-specific T cells in such a group of 18 individuals. We observed mostly high levels of CD127 expression (median, 66%) on these populations (Fig. (Fig.1a),1a), although expression was higher on HCV-specific T-cell populations from individuals with resolved infection (median, 97%; P = 0.0003) (Fig. 1a and c). Importantly, chronically infected individuals displayed CD127 expression levels over a much broader range than resolved individuals (9.5% to 100% versus 92 to 100%) (Fig. (Fig.1a1a).Open in a separate windowFIG. 1.Chronically infected individuals express a range of CD127 levels on HCV-specific T cells. (a) CD127 expression levels on HCV-specific T-cell populations in individuals with established chronic or resolved infection. While individuals with resolved infection (11 tetramer stains in 9 subjects) uniformly express high levels of CD127, chronically infected individuals (21 tetramer stains in 18 subjects) express a wide range of CD127 expression levels. (b) CD127 expression levels are seen to be highly dependent on sequence match with the autologous virus, based on analysis of 9 responses with diminished recognition of the autologous virus and 8 responses with intact epitopes. (c) CD127 expression levels on HCV-specific T-cell B7 CORE 41-49-specific T cells from individual 01-49 with resolved HCV infection (left-hand panel). Lower CD127 expression levels are observed on an EBV-specific T-cell population from the same individual (right-hand panel). APC-A, allophycocyanin-conjugated antibody. (d) Low CD127 levels are observed on A2 NS3 1073-1083 HCV-specific T cells from individual 111 with chronic HCV infection in whom sequencing revealed an intact autologous sequence.Given the relationship between CD127 expression and antigenic stimulation as well as the potential of HCV to escape the CD8 T-cell response through viral mutation, we sequenced the autologous circulating virus in subjects with chronic infection (Table (Table1).1). A perfect match between the optimal epitope sequence and the autologous virus was found for only 8 responses. These were the only T-cell populations with lower levels of CD127 expression (Fig. (Fig.1a,1a, b, and d). In contrast, HCV T-cell responses with CD127 expression levels comparable to those observed in resolved infection (>85%) were typically mismatched with the viral sequence, with some variants compatible with viral escape and others suggesting infection with a non-genotype 1 strain (10) (Fig. (Fig.1).1). Enzyme-linked immunospot (ELISPOT) assays using T-cell lines confirmed the complete abrogation of T-cell recognition and thus antigenic stimulation in cases of cross-genotype mismatch (10). Responses targeting the epitope A1-143D expressed somewhat lower levels of CD127 (between 70% and 85%). Viral escape (Y to F at position 9) in this epitope has been shown to be associated with significantly diminished but not fully abolished recognition (11a), and was found in all chronically infected subjects whose T cells targeted this epitope. Thus, expression of CD127 in the presence of viremia is closely associated with the capacity of the T cell to recognize the circulating virus.That a decrease in antigenic stimulation is indeed associated with the emergence of CD127-expressing CD8 T cells is further demonstrated in subject 111. This subject with chronic infection targeted fully conserved epitopes with T cells with low CD127 expression; with clearance of viremia under antiviral therapy, CD127-negative HCV-specific CD8 T cells were no longer detectable and were replaced by populations expressing CD127 (data not shown). Overall these data support the notion that CD127 expression on HCV-specific CD8+ T-cell populations is dependent on an absence of ongoing antigenic stimulation.To further evaluate the dynamic relationship between antigenic stimulation and CD127 expression, we also analyzed HCV-specific T-cell responses longitudinally during acute HCV infection (Fig. (Fig.2a).2a). CD127 expression was generally low or absent during the earliest time points. After resolution of infection, we see a contraction of the HCV-specific T-cell response together with a continuous increase in CD127 expression, until virtually all tetramer-positive cells express CD127 approximately 6 months after the onset of disease (Fig. (Fig.2a).2a). A similar increase in CD127 expression was not seen in one subject (no. 554) with untreated persisting infection that maintained a significant tetramer-positive T-cell population for an extended period of time (Fig. (Fig.2a).2a). Importantly, sequence analysis of the autologous virus demonstrated the conservation of this epitope throughout persistent infection (8). In contrast, subject 03-32 (with untreated persisting infection) developed a CD8 T-cell response targeting a B35-restricted epitope in NS3 from which the virus escaped (8). The T cells specific for this epitope acquired CD127 expression in a comparable manner to those controlling infection (Fig. (Fig.2a).2a). In other subjects with persisting infection, HCV-specific T-cells usually disappeared from blood before the time frame in which CD127 upregulation was observed in the other subjects.Open in a separate windowFIG. 2.CD127 expression levels during acute HCV infection. (a) CD127 expression levels on HCV-specific T cells during the acute phase of HCV infection (data shown for 5 individuals who resolve and two individuals who remain chronically infected). (b) HCV RNA viral load and CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) for chronically infected individual 00-23. PEG-IFN-α, pegylated alpha interferon. (c) Fluorescence-activated cell sorter (FACS) plots showing longitudinal CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) from individual 00-23.We also characterized the levels of CD127 expression on HCV-specific CD4+ T-cell populations with similar results: low levels were observed during the acute phase of infection and increased levels in individuals after infection was cleared (data not shown). CD127 expression on CD4 T cells could not be assessed in viral persistence since we failed to detect significant numbers of HCV-specific CD4+ T cells, in agreement with other reports.In our cohort of subjects with acute HCV infection, we had the opportunity to study the effect of reencounter with antigen on T cells with high CD127 expression in 3 subjects in whom HCV viremia returned after a period of viral control. Subject 00-23 experienced viral relapse after interferon treatment (11), while subjects 05-13 and 04-11 were reinfected with distinct viral isolates. In all subjects, reappearance of HCV antigen that corresponded to the HCV-specific T-cell population was associated with massive expansion of HCV-specific T-cell populations and a decrease in CD127 expression on these T cells (Fig. (Fig.22 and and3)3) (data not shown). In contrast, T-cell responses that did not recognize the current viral isolate did not respond with an expansion of the population or the downregulation of CD127. This was observed in 00-23, where the sequence of the A1-restricted epitope 143D was identical to the frequent escape mutation described above in chronically infected subjects associated with diminished T-cell recognition (Fig. (Fig.2b2b and and3a).3a). In 05-13, the viral isolate during the second episode of viremia contained a variant in one of the anchor residues of the epitope A2-61 (Fig. (Fig.2d).2d). These results show that CD127 expression on HCV-specific T cells follows the established principles observed in other viral infections.Open in a separate windowFIG. 3.Longitudinal phenotypic changes on HCV-specific T cells. (a) HCV RNA viral load and CD127 expression (%) levels on A2 NS5B 2594-2602 HCV-specific T cells for individual 04-11. This individual was administered antiviral therapy, which resulted in a sustained virological response. Following reinfection, the individual spontaneously cleared the virus. (b) Longitudinal frequency of A2 NS5B 2594-2602 HCV-specific T cells and PD-1 expression levels (mean fluorescent intensity [MFI]) for individual 04-11. (c) Longitudinal analysis of 04-11 reveals the progressive differentiation of HCV-specific A2 259F CD8+ T cells following repetitive antigenic stimulation. FACS plots show longitudinal CD127, CD27, CD57, and CCR7 expression levels on A2 NS5B 2594-2602 tetramer-positive cells from individual 04-11. PE-A, phycoerthrin-conjugated antibody.In addition to the changes in CD127 expression for T cells during reencounter with antigen, we detected comparable changes in other phenotypic markers shortly after exposure to viremia. First, we detected an increase in PD-1 and CD38 expression—both associated with recent T-cell activation. Additionally, we observed a loss of CD27 expression, a feature of repetitive antigenic stimulation (Fig. (Fig.3).3). The correlation of CD127 and CD27 expression further supports the notion that CD127 downregulation is a marker of continuous antigenic stimulation (1, 7).In conclusion we confirm that high CD127 expression levels are common for detectable HCV-specific CD8+ T-cell populations in chronic infection and find that this phenotype is based on the existence of viral sequence variants rather than on unique properties of HCV-specific T cells. This is further demonstrated by our data from acute HCV infection showing that viral escape as well as viral resolution is driving the upregulation of CD127. We also show that some, but not all, markers typically used to phenotypically describe virus-specific T cells show a similar dependence on cognate HCV antigen. Our data further highlight that sequencing of autologous virus is vital when interpreting data obtained in chronic HCV infection and raise the possibility that previous studies, focused on individuals with established chronic infection, may have been confounded by antigenic variation within epitopes or superinfection with different non-cross-reactive genotypes. Interestingly, it should be pointed out that this finding is supported by previous data from both the chimpanzee model of HCV and from human HBV infection (3, 13).Overall our data clearly demonstrate that the phenotype of HCV-specific CD8+ T cells is determined by the level of antigen-specific stimulation. The high number of CD127 positive virus-specific CD8+ T cells that is associated with the presence of viral escape mutations is a hallmark of chronic HCV infection that clearly separates HCV from other chronic viral infections (4, 14).  相似文献   

5.
Identification of Pathogenic Vibrio Species by Multilocus PCR-Electrospray Ionization Mass Spectrometry and Its Application to Aquatic Environments of the Former Soviet Republic of Georgia     
Chris A. Whitehouse  Carson Baldwin  Rangarajan Sampath  Lawrence B. Blyn  Rachael Melton  Feng Li  Thomas A. Hall  Vanessa Harpin  Heather Matthews  Marina Tediashvili  Ekaterina Jaiani  Tamar Kokashvili  Nino Janelidze  Christopher Grim  Rita R. Colwell  Anwar Huq 《Applied and environmental microbiology》2010,76(6):1996-2001
  相似文献   

6.
A conifer genome spruces up plant phylogenomics     
Pamela S Soltis  Douglas E Soltis 《Genome biology》2013,14(6):122
The Norway spruce genome provides key insights into the evolution of plant genomes, leading to testable new hypotheses about conifer, gymnosperm, and vascular plant evolution.In the past year a burst of plant genome sequences have been published, providing enhanced phylogenetic coverage of green plants (Figure (Figure1)1) and inclusion of new agricultural, ecological, and evolutionary models. Collectively, these sequences are revealing some extraordinary structural and evolutionary attributes in plant genomes. Perhaps most surprising is the exceptionally high frequency of whole-genome duplication (WGD): nearly every genome that has been analyzed has borne the signature of one or more WGDs, with particularly notable events having occurred in the common ancestors of seed plants, of angiosperms, and of core eudicots (the latter ''WGD'' represents two WGDs in close succession) [1,2]. Given this tendency for plant genomes to duplicate and then return to an essentially diploid genetic system (an example is the cotton genomes, which have accumulated the effects of perhaps 15 WGDs [3]), the conservation of genomes in terms of gene number, chromosomal organization, and gene content is astonishing. From the publication of the first plant genome, Arabidopsis thaliana [4], the number of inferred genes has been between 25,000 and 30,000, with many gene families shared across all land plants, although the number of members and patterns of expansion and contraction vary. Furthermore, conserved synteny has been detected across the genomes of diverse angiosperms, despite WGDs, diploidization, and millions of years of evolution.Open in a separate windowFigure 1Simplified phylogeny of land plants, showing major clades and their component lineages. Asterisks indicate species (or lineage) for which whole-genome sequence (or sequences) is (are) available. Increases and decreases in genome size are shown by arrows.Despite the proliferation of genome sequences available for angiosperms, genome-level data for both ferns (and their relatives, collectively termed monilophytes; Figure Figure1)1) and gymnosperms have been conspicuously lacking - until recently, with the publication of the genome sequence of the gymnosperm Norway spruce (Picea abies) [5]. The large genome sizes for both monilophytes and gymnosperms have discouraged attempts at genome sequencing and assembly, whereas the smaller genome size of angiosperms has resulted in more genome sequences being available (Table (Table1)1) [6]. Because of this limited phylogenetic sample, our understanding of the timing and phylogenetic positions of WGDs, the core number of plant genes, possible conserved syntenic regions, and patterns of expansion and contraction of gene families across both tracheophytes (vascular plants) and across all land plants is imperfect. This sampling problem is particularly acute in analyses of the genes and genomes of seed plants; many hundreds of genes are present in angiosperms that are not present in mosses or lycophytes, but whether these genes arose in the common ancestor of seed plants or of angiosperms cannot be determined without a gymnosperm genome sequence. The Norway spruce genome therefore offers tremendous power, not only for understanding the structure and evolution of conifer genomes, but also as a reference for interpreting gene and genome evolution in angiosperms.

Table 1

Genome sizes in land plants
LineageRange (1C; pg)Mean
Gymnosperms
  Conifers
    Pinaceae9.5-36.023.7
    Cupressaceae8.3-32.112.8
    Sciadopitys 20.8n/a
  Gnetales
    Ephedraceae8.9-15.78.9
    Gnetaceae2.3-4.02.3
    Cycadaceae12.6-14.813.4
    Ginkgo biloba11.75n/a
Monilophytes
    Ophioglossaceae10.2-65.631.05
    Equisetaceae12.9-30422.0
    Psilotum72.7n/a
  Leptosporangiate ferns
    Polypodiaceae7.5-19.77.5
    Aspleniaceae4.1-9.16.2
    Athyriaceae6.3-9.37.6
    Dryopteridaceae6.8-23.611.7
  Water ferns
    Azolla0.77n/a
Angiosperms
    Oryza sativa 0.50n/a
    Amborella trichopoda0.89n/a
    Arabidopsis thaliana0.16n/a
    Zea mays2.73n/a
Open in a separate windown/a, not applicable. Data based on [6].  相似文献   

7.
Economic Benefits of Investing in Women’s Health: A Systematic Review     
Kristine Hus?y Onarheim  Johanne Helene Iversen  David E. Bloom 《PloS one》2016,11(3)

Background

Globally, the status of women’s health falls short of its potential. In addition to the deleterious ethical and human rights implications of this deficit, the negative economic impact may also be consequential, but these mechanisms are poorly understood. Building on the literature that highlights health as a driver of economic growth and poverty alleviation, we aim to systematically investigate the broader economic benefits of investing in women’s health.

Methods

Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we systematically reviewed health, gender, and economic literature to identify studies that investigate the impact of women’s health on micro- and macroeconomic outcomes. We developed an extensive search algorithm and conducted searches using 10 unique databases spanning the timeframe 01/01/1970 to 01/04/2013. Articles were included if they reported on economic impacts stemming from changes in women’s health (table of outcome measures included in full review, Outcome measures   FertilityIntergenerational Health SpilloverEducationProductivitySavingsMicroeconomic level    Total fertility rateChild survivalEnrollment in schoolIncomeMoneyChange in fertilityChild wellbeing and behaviorYears of schoolingPurchasing powerAssetsAge at first birth/ teenage pregnanciesAnthropometryEarly drop outPerformanceBirth spacingImproved cognitive developmentPerformance in school Life expectancyHigher education  Adult health outcomesLiteracy  Nutrition   Intrauterine growth  Macroeconomic level    Open in a separate windowGross domestic product/gross national product, gross domestic product/gross national product growth, income per capita, labor force participation, per capita income.

Results

The existing literature indicates that healthier women and their children contribute to more productive and better-educated societies. This study documents an extensive literature confirming that women’s health is tied to long-term productivity: the development and economic performance of nations depends, in part, upon how each country protects and promotes the health of women. Providing opportunities for deliberate family planning; healthy mothers before, during, and after childbirth, and the health and productivity of subsequent generations can catalyze a cycle of positive societal development.

Conclusions

This review highlights the untapped potential of initiatives that aim to address women’s health. Societies that prioritize women’s health will likely have better population health overall, and will remain more productive for generations to come.  相似文献   

8.
Cognitive Manic Symptoms in Bipolar Disorder Associated with Polymorphisms in the DAOA and COMT Genes     
Dzana Sudic Hukic  Louise Frisén  Lena Backlund  Catharina Lavebratt  Mikael Landén  Lil Tr?skman-Bendz  Gunnar Edman  Martin Schalling  Urban ?sby 《PloS one》2013,8(7)

Introduction

Bipolar disorder is characterized by severe mood symptoms including major depressive and manic episodes. During manic episodes, many patients show cognitive dysfunction. Dopamine and glutamate are important for cognitive processing, thus the COMT and DAOA genes that modulate the expression of these neurotransmitters are of interest for studies of cognitive function.

Methodology

Focusing on the most severe episode of mania, a factor was found with the combined symptoms of talkativeness, distractibility, and thought disorder, considered a cognitive manic symptoms (CMS) factor. 488 patients were genotyped, out of which 373 (76%) had talkativeness, 269 (55%) distractibility, and 372 (76%) thought disorder. 215 (44%) patients were positive for all three symptoms, thus showing CMS (Bipolar disorder type 1 [n]488Men [n (%)]209 (43)Talkativeness [n (%)]373 (76)Distracibility [n (%)]269 (55)Thought disorder [n (%)]372 (76)Cognitive manic symptoms* [n (%)]215 (44)Men [n (%)]81 (39)Non-Cognitive manic symptoms [n (%)]248 (51)Men [n (%)]117 (56)Unknown [n (%)]25 (5)Men [n (%)]11 (44)Anonymous blood donors (ABD)1044Men [n (%)]616 (59)Open in a separate window*having all three symptoms: talkativeness, distractibility, and tought disorder.

Results

The finding of this study was that cognitive manic symptoms in patients with bipolar 1 disorder was associated with genetic variants in the DAOA and COMT genes. Nominal association for DAOA SNPs and COMT SNPs to cognitive symptoms factor in bipolar 1 disorder was found in both allelic (BP1 CMSBP1 non-CMSABDBP1 CMS vs. non-CMSb BP1 CMS vs. ABD controlsb GeneSNPa aa/ab/bbaa/ab/bbaa/ab/bbpEMP1c EMP2d OR [95% CI] e pEMP1c EMP2d OR [95% CI] e DAOA rs3916967 (C/T)32/88/8950/118/77177/494/3610.0180.0180.210.72 [0.55–0.93]0.0290.0260.280.78 [0.66–1.0] DAOA rs2391191 (A/C)28/75/7939/111/70179/487/3570.0550.0390.500.75 [0.57–1.0]0.0200.0190.210.75 [0.63–1.0] DAOA rs1935062 (C/A)26/67/8935/102/86146/460/4050.120.120.780.80 [0.58–1.0]0.0690.0660.520.80 [0.65–1.0] COMT rs5993883 (T/G)33/120/5371/112/57269/510/2230.0250.0300.270.73 [0.56–0.95]0.0017* 1.0E−4 * 0.021* 0.68 [0.91–1.4] COMT rs165599 (G/A)29/94/8725/93/12687/443/5010.0930.0940.691.27 [1.0–1.8]0.0140.0170.161.34 [1.1–1.7]Open in a separate windowaSNP (minor allele(a)/major allele(b)).bgender and rs1718119 as covariate.cpoint-wise p-value from 10,000 pemutations with no covarite (EMP1).dcorrected empirical p-value by max (T) permutation.eodds ratio (OR), the proportion of minor versus major allele affected (cognitive manic symptoms factor)/proportion of minor versus major allele unaffected (non-cognitive manic symptoms factor or ABD controls).*significant after correction for multiple testing by max (T) permutation.

Table 3

Haplotype association of haplotype group 1 in bipolar 1 patients with cognitive manic symptoms (CMS) compared with non-CMS patients or ABD controls in the DAOA gene.
CMS vs non-CMSb CMS vs ABDb
DAOA rs3916967rs2391191rs1935062Fa pOR [95% CI]c Fa pOR [95% CI]c
Haplotype 1CAC0.320.250.83 [0.66–1.1]0.330.140.83 [0.71–1.1]
Haplotype 2TGC0.0320.340.64 [0.32–1.1]0.0370.190.58 [0.37–1.1]
Haplotype 3CAA0.0740.0770.58 [0.39–0.89]0.0750.100.65 [0.47–1.0]
Haplotype 4TGA0.570.0291.38 [1.17–1.8]0.560.00571.41 [1.1–1.6]
Open in a separate windowafrequency (F) in sample.bgender and rs1718119 as covariates.codds ratios (OR) for each haplotype.

Conclusion

Identifying genes associated with cognitive functioning has clinical implications for assessment of prognosis and progression. Our finding are consistent with other studies showing genetic associations between the COMT and DAOA genes and impaired cognition both in psychiatric disorders and in the general population.  相似文献   

9.
Big Data: Astronomical or Genomical?     
Zachary D. Stephens  Skylar Y. Lee  Faraz Faghri  Roy H. Campbell  Chengxiang Zhai  Miles J. Efron  Ravishankar Iyer  Michael C. Schatz  Saurabh Sinha  Gene E. Robinson 《PLoS biology》2015,13(7)
Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade.We compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Astronomy has faced the challenges of Big Data for over 20 years and continues with ever-more ambitious studies of the universe. YouTube burst on the scene in 2005 and has sparked extraordinary worldwide interest in creating and sharing huge numbers of videos. Twitter, created in 2006, has become the poster child of the burgeoning movement in computational social science [6], with unprecedented opportunities for new insights by mining the enormous and ever-growing amount of textual data [7]. Particle physics also produces massive quantities of raw data, although the footprint is surprisingly limited since the vast majority of data are discarded soon after acquisition using the processing power that is coupled to the sensors [8]. Consequently, we do not include the domain in full detail here, although that model of rapid filtering and analysis will surely play an increasingly important role in genomics as the field matures.To compare these four disparate domains, we considered the four components that comprise the “life cycle” of a dataset: acquisition, storage, distribution, and analysis ( Data Phase Astronomy Twitter YouTube Genomics Acquisition 25 zetta-bytes/year0.5–15 billion tweets/year500–900 million hours/year1 zetta-bases/year Storage 1 EB/year1–17 PB/year1–2 EB/year2–40 EB/year Analysis In situ data reductionTopic and sentiment miningLimited requirementsHeterogeneous data and analysisReal-time processingMetadata analysisVariant calling, ~2 trillion central processing unit (CPU) hoursMassive volumesAll-pairs genome alignments, ~10,000 trillion CPU hours Distribution Dedicated lines from antennae to server (600 TB/s)Small units of distributionMajor component of modern user’s bandwidth (10 MB/s)Many small (10 MB/s) and fewer massive (10 TB/s) data movementOpen in a separate window  相似文献   

10.
The Russian invasion of Ukraine: a humanitarian tragedy and a tragedy for science     
Halyna R Shcherbata 《EMBO reports》2022,23(5)
The Invasion of Ukraine prompts us to support our Ukranian colleagues but also to keep open communication with the Russian scientists who oppose the war.

In the eyes of the civilized world, Russia has already lost the war: politically, it is becoming ever more isolated; economically as the sanctions take an enormous toll; militarily as the losses of the Russian army mount. In contrast, the courage of Ukrainian people fighting for their independence has united the Western world that is providing enormous support for those Ukrainians who fight the Russian invasion and those who have fled their war‐torn country. Once this war is over, Ukraine will have to heal the wounds of war, reunite families, restore its economy, reestablish infrastructure, and rebuild science and education. Russia will have to restore its dignity and overcome its self‐inflicted isolation.Europe’s unity in condemning Russia’s war of aggression and showing its solidarity with Ukraine has been impressive. This includes not the least welcoming and accommodating millions of refugees. We, the scientific community in Europe, have a moral obligation to help Ukrainian students and colleagues by providing safe space to study and to continue their research. First, European research organizations and funding agencies should develop strategies to support them in the years to come. Second, efforts by EMBO, research funders, universities, and research institutions to support Ukrainian students and scientists are necessary. As a first priority, dedicated and unbureaucratic short‐term scholarship and grant programs are required to accommodate Ukrainian scientists; such programs have been already initiated by many organizations, for example, by EMBO, Volkswagen Stiftung, Max Planck Society, and the ERC among others. These help Ukrainian scientists to stay connected to research and become integrated into the European research landscape. In the long‐term and after the war, this aid should be complemented by funding for research centers of excellence in Ukraine, to which scientists could then return.Even though the priority must be to help Ukrainians, we must also think of students and colleagues in Russia who oppose the war and are affected by the sanctions. As the Iron Curtain closes again, we have to think differently about our ongoing and future collaborations. Although freezing most, if not all, research collaborations with official Russian organizations is justified, it would be a mistake to extend these sanctions to all scientists and students. There is already an exodus of Russian and Belarusian scholars, which will only accelerate in the next months and years, and accepting scientists who ask for political asylum will be beneficial for Europe.The fraction of Russian society in open opposition to the war is, unfortunately, smaller than that officially in support of it. At the beginning of the war, a number of Russian scientists published an open letter on the internet, in which they condemn this war (https://t‐invariant.org/2022/02/we‐are‐against‐war/). They clearly state that "The responsibility for unleashing a new war in Europe lies entirely with Russia. There is no rational justification for this war”, and “demand an immediate halt to all military operations directed against Ukraine". At the same time, other prominent Russian science and education officials signed the “Statement of the Russian Union of University Rectors (Provosts)”, which expressed unwavering support for Russia, its president and its Army and their goal to “to achieve demilitarization and denazification of Ukraine and thus to defend ourselves from the ever‐growing military threat” (https://www.rsr‐online.ru/news/2022‐god/obrashchenie‐rossiyskogo‐soyuza‐rektorov1/).Inevitably, Russian scientists must decide themselves how to live and continue their scientific work under the increasingly tight surveillance of the Kremlin regime. History is repeating itself. Not long ago, during the Cold War, Soviet scientists were largely isolated from the international research community and worked in government‐controlled research. In some fields, no one knew what they were working on or where. However, even in those dark times, courageous individuals such as Andrei Sakharov spoke out against the regime and tried to educate the next generation about the importance of free will. Many Soviet geneticists had been arrested under Stalin’s regime of terror and as a result of Lysenkoism and were executed or sent to the Gulag or had to emigrate, such as Nikolaj Timofeev‐Resovskij, one of the great geneticists of his time and an opponent of communism. As a result of sending dissident scientists to Siberia, great educational institutions were created in the region, which trained many famous scientists. History tells us that it is impossible to kill free will and the search for truth.The Russian invasion of Ukraine is a major humanitarian tragedy and a tragedy for science at many levels. Our hope is that the European science community, policymakers, and funders will be prepared to continue and expand support for our colleagues from Ukraine and eventually help to rebuild the bridges with Russian science that have been torn down.This commentary has been endorsed and signed by the EMBO Young Investigators and former Young Investigators listed below.

All signatories are current and former EMBO Young Investigators and endorse the statements in this article.
Igor AdameykoKarolinska Institut, Stockholm, Sweden
Bungo AkiyoshiUniversity of Oxford, United Kingdom
Leila AkkariNetherlands Cancer Institute, Amsterdam, Netherlands
Panagiotis AlexiouMasaryk University, Brno, Czech Republic
Hilary AsheFaculty of Life Sciences, University of Manchester, United Kingdom
Michalis AverofInstitut de Génomique Fonctionnelle de Lyon (IGFL), France
Katarzyna BandyraUniversity of Warsaw, Poland
Cyril BarinkaInstitute of Biotechnology AS CR, Prague, Czech Republic
Frédéric BergerGregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
Vitezslav BryjaInstitute of Experimental Biology, Masaryk University, Brno, Czech Republic
Janusz BujnickiInternational Institute of Molecular and Cell Biology, Warsaw, Poland
Björn BurmannUniversity Gothenburg, Sweden
Andrew CarterMRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Pedro CarvalhoSir William Dunn School of Pathology University of Oxford, United Kingdom
Ayse Koca CaydasiKoç University, Istanbul, Turkey
Hsu‐Wen ChaoMedical University, Taipei, Taiwan
Jeffrey ChaoFriedrich Miescher Institute, Basel, Switzerland
Alan CheungUniversity of Bristol, United Kingdom
Tim ClausenResearch Institute for Molecular Pathology (IMP), Vienna, Austria
Maria Luisa CochellaThe Johns Hopkins University School of Medicine, USA
Francisco CubillosSantiago de Chile, University, Chile
Uri Ben‐DavidTel Aviv University, Tel Aviv, Israel
Sebastian DeindlUppsala University, Sweden
Pierre‐Marc DelauxLaboratoire de Recherche en Sciences Végétales, Castanet‐Tolosan, France
Christophe DessimozUniversity, Lausanne, Switzerland
Maria DominguezInstitute of Neuroscience, CSIC ‐ University Miguel Hernandez, Alicante, Spain
Anne DonaldsonInstitute of Medical Sciences, University of Aberdeen, United Kingdom
Peter DraberBIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
Xiaoqi FengJohn Innes Centre, Norwich, United Kingdom
Luisa FigueiredoInstitute of Molecular Medicine, Lisbon, Portugal
Reto GassmannInstitute for Molecular and Cell Biology, Porto, Portugal
Kinga Kamieniarz‐GdulaAdam Mickiewicz University in Poznań, Poland
Roger GeigerInstitute for Research in Biomedicine, Bellinzona, Switzerland
Niko GeldnerUniversity of Lausanne, Switzerland
Holger GerhardtMax Delbrück Center for Molecular Medicine, Berlin, Germany
Daniel Wolfram GerlichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Jesus GilMRC Clinical Sciences Centre, Imperial College London, United Kingdom
Sebastian GlattMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
Edgar GomesInstitute of Molecular Medicine, Lisbon, Portugal
Pierre GönczySwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Maria GornaUniversity of Warsaw, Poland
Mina GoutiMax‐Delbrück‐Centrum, Berlin, Germany
Jerome GrosInstitut Pasteur, Paris, France
Anja GrothBiotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
Annika GuseCentre for Organismal Studies, Heidelberg, Germany
Ricardo HenriquesInstituto Gulbenkian de Ciência, Oeiras, Portugal
Eva HoffmannCenter for Chromosome Stability, University of Copenhagen, Denmark
Thorsten HoppeCECAD at the Institute for Genetics, University of Cologne, Germany
Yen‐Ping HsuehAcademia Sinica, Taipei, Taiwan
Pablo HuertasAndalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
Matteo IannaconeIRCCS San Raffaele Scientific Institute, Milan, Italy
Alvaro Rada‐IglesiasInstitue of Biomedicine and Biotechnology of Cantabria (IBBTEC)
University of Cantabria, Santander, Spain
Axel InnisInstitut Européen de Chimie et Biologie (IECB), Pessac, France
Nicola IovinoMPI für Immunbiologie und Epigenetik, Freiburg, Germany
Carsten JankeInstitut Curie, France
Ralf JansenInterfaculty Institute for Biochemistry, Eberhard‐Karls‐University Tübingen, Germany
Sebastian JessbergerHiFo / Brain Research Institute, University of Zurich, Switzerland
Martin JinekUniversity of Zurich, Switzerland
Simon Bekker‐JensenUniversity, Copenhagen, Denmark
Nicole JollerUniversity of Zurich, Switzerland
Luca JovineDepartment of Biosciences and Nutrition & Center for
Biosciences, Karolinska Institutet, Stockholm, Sweden
Jan Philipp JunkerMax‐Delbrück‐Centrum, Berlin, Germany
Anna KarnkowskaUniversity, Warsaw, Poland
Zuzana KeckesovaInstitute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
René KettingInstitute of Molecular Biology (IMB), Mainz, Germany
Bruno KlaholzInstitute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, Illkirch, France
Jürgen KnoblichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Taco KooijCentre for Molecular Life Sciences, Nijmegen, Netherlands
Romain KoszulInstitut Pasteur, Paris, France
Claudine KraftInstitute for Biochemistry and Molecular Biology, Universität Freiburg, Germany
Alena KrejciFaculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
Lumir KrejciNational Centre for Biomolecular Research (NCBR), Masaryk University, Brno, Czech Republic
Arnold KristjuhanInstitute of Molecular and Cell Biology, University of Tartu, Estonia
Yogesh KulathuMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Edmund KunjiMRC Mitochondrial Biology Unit, Cambridge, United Kingdom
Karim LabibMRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
Thomas LecuitDevelopmental Biology Institute of Marseilles ‐ Luminy (IBDML), France
Gaëlle LegubeCenter for Integrative Biology in Toulouse, Paul Sabatier University, France
Suewei LinAcademia Sinica, Taipei, Taiwan
Ming‐Jung LiuAcademia Sinica, Taipei, Taiwan
Malcolm LoganRandall Division of Cell and Molecular Biophysics, King’s College London, United Kingdom
Massimo LopesUniversity of Zurich, Switzerland
Jan LöweStructural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Martijn LuijsterburgUniversity Medical Centre, Leiden, Netherlands
Taija MakinenUppsala University, Sweden
Sandrine Etienne‐MannevilleInstitut Pasteur, Paris, France
Miguel ManzanaresSpanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
Jean‐Christophe MarineCenter for Biology of Disease, Laboratory for Molecular Cancer Biology, VIB & KU Leuven, Belgium
Sascha MartensMax F. Perutz Laboratories, University of Vienna, Austria
Elvira MassUniversität Bonn, Germany
Olivier MathieuClermont Université, Aubière, France
Ivan MaticMax Planck Institute for Biology of Ageing, Cologne, Germany
Joao MatosMax Perutz Laboratories, Vienna, Austria
Nicholas McGranahanUniversity College London, United Kingdom
Hind MedyoufGeorg‐Speyer‐Haus, Frankfurt, Germany
Patrick MeraldiUniversity of Geneva, Switzerland
Marco MilánICREA & Institute for Research in Biomedicine (IRB), Barcelona, Spain
Eric MiskaWellcome Trust/Cancer Research UK Gurdon Institute,
University of Cambridge, United Kingdom
Nuria MontserratInstitut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
Nuno Barbosa‐MoraisInstitute of Molecular Medicine, Lisbon, Portugal
Antonin MorillonInstitut Curie, Paris, France
Rafal MostowyJagiellonian University, Krakow, Poland
Patrick MüllerUniversity of Konstanz, Konstanz, Germany
Miratul MuqitUniversity of Dundee, United Kigdom
Poul NissenCentre for Structural Biology, Aarhus University, Denmark
Ellen NollenEuropean Research Institute for the Biology of Ageing, University of Groningen, Netherlands
Marcin NowotnyInternational Institute of Molecular and Cell Biology, Warsaw, Poland
John O''NeillMRC Laboratory of Molecular Biology, Cambridge, United Kigdom
Tamer ÖnderKoc University School of Medicine, Istanbul, Turkey
Elin OrgUniversity of Tartu, Estonia
Nurhan ÖzlüKoç University, Istanbul, Turkey
Bjørn Panyella PedersenAarhus University, Denmark
Vladimir PenaLondon, The Institute of Cancer Research, United Kingdom
Camilo PerezBiozentrum, University of Basel, Switzerland
Antoine PetersFriedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
Clemens PlaschkaIMP, Vienna, Austria
Pavel PlevkaCEITEC, Masaryk University, Brno, Czech Republic
Hendrik PoeckTechnische Universität, München, , Germany
Sophie PoloUniversité Diderot (Paris 7), Paris, France
Simona PoloIFOM ‐ The FIRC Institute of Molecular Oncology, Milan, Italy
Magdalini PolymenidouUniversity of Zurich, Switzerland
Freddy RadtkeSwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Markus RalserInstitute of Biochemistry Charité, Berlin, Germany & MRC National Institute for Medical Research, London, United Kingdom
Jan RehwinkelJohn Radcliffe Hospital, Oxford, United Kingdom
Maria RescignoEuropean Institute of Oncology (IEO), Milan, Italy
Katerina RohlenovaPrague, Institute of Biotechnology, Czech Republic
Guadalupe SabioCentro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
Ana Jesus Garcia SaezUniversity of Cologne, CECAD Research Center, Germany
Iris SaleckerInstitut de Biologie de l''Ecole Normale Supérieure (IBENS), Paris, France
Peter SarkiesUniversity of Oxford, United Kingdom
Frédéric SaudouGrenoble Institute of Neuroscience, France
Timothy SaundersCentre for Mechanochemical Cell Biology, Interdisciplinary Biomedical Research Building, Warwick Medical School, Coventry, United Kingdom
Orlando D. SchärerIBS Center for Genomic Integrity, Ulsan, South Korea
Arp SchnittgerBiozentrum Klein Flottbek, University of Hamburg, Germnay
Frank SchnorrerAix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
Maya SchuldinerDepartment of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Schraga SchwartzWeizmann Institute of Science, Rehovot, Israel
Martin SchwarzerInstitute of Microbiology, Academy of Sciences of the Czech Republic
Claus MariaInstituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa, Portugal
Hayley SharpeThe Babraham Institute, United Kingdom
Halyna ShcherbataInstitute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
Eric SoDepartment of Haematological Medicine, King''s College London, United Kingdom
Victor SourjikMax Planck Institute for Terrestrial Microbiology, Marburg, Germany
Anne SpangBiozentrum, University of Basel, Switzerland
Irina StanchevaInstitute of Cell Biology, University of Edinburgh, United Kingdom
Bas van SteenselDepartment of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, Netherlands
Richard SteflCEITEC, Masaryk University, Brno, Czech Republic
Yonatan StelzerWeizmann Institute of Science, Rehovot, Israel
Julian StingeleLudwig‐Maximilians‐Universität, München, Germany
Katja SträßerInstitute for Biochemistry, University of Giessen, Germany
Kvido StrisovskyInstitute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
Joanna SulkowskaUniversity, Warsaw, Poland
Grzegorz SumaraNencki Institute of Experimental Biology, Warsaw, Poland
Karolina SzczepanowskaInternational Institute Molecular Mechanisms & Machines PAS, Warsaw, Poland
Luca TamagnoneInstitute for Cancer Research and Treatment, University of Torino Medical School, Italy
Meng How TanSingapore, Nanyang Technological University, Singapore
Nicolas TaponCancer Research UK London Research Institute, United Kingdom
Nicholas M. I. TaylorUniversity, Copenhagen, Denmark
Sven Van TeeffelenUniversité de Montréal, Canada
Maria Teresa TeixeiraLaboratory of Molecular and Cellular Biology of Eukaryotes, IBPC, Paris, France
Aurelio TelemanGerman Cancer Research Center (DKFZ), Heidelberg, Germany
Pascal TherondInstitute Valrose Biology, University of Nice‐Sophia Antipolis, France
Pavel TolarUniversity College London, United Kingdom
Isheng Jason TsaiAcademia Sinica, Taipei, Taiwan
Helle UlrichInstitute of Molecular Biology (IMB), Mainz, Germany
Stepanka VanacovaCentral European Institute of Technology, Masaryk University, Brno, Czech Republic
Henrique Veiga‐FernandesChampalimaud Center for the Unknown, Lisboa, Portugal
Marc VeldhoenInstituto de Medicina Molecular, Lisbon, Portugal
Louis VermeulenAcademic Medical Centre, Amsterdam, Netherlands
Uwe VinkemeierUniversity of Nottingham Medical School, United Kingdom
Helen WaldenMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Michal WandelInstitute of Biochemistry and Biophysics, PAS, Warsaw, Poland
Julie WelburnWellcome Trust Centre, Edinburgh, United Kingdom
Ervin WelkerInstitute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Gerhard WingenderIzmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
Thomas WollertInstitute Pasteur, Membrane Biochemistry and Transport, Centre François Jacob, Paris, France
Hyun YoukUniversity of Massachusetts Medical School, USA
Christoph ZechnerMPI für molekulare Zellbiologie und Genetik, Dresden, Germany
Philip ZegermanWellcome Trust / Cancer Research UK Gurdon Institute, University of Cambridge, United Kingdom
Alena ZikováInstitute of Parasitology, Biology Centre AS CR, Ceske Budejovice, Czech Republic
Piotr ZiolkowskiAdam Mickiewicz University, Poznan, Poland
David ZwickerMPI für Dynamik und Selbstorganisation, Göttingen, Germany
Open in a separate window  相似文献   

11.
Conventional transmission electron microscopy     
Mark Winey  Janet B. Meehl  Eileen T. O'Toole  Thomas H. Giddings  Jr. 《Molecular biology of the cell》2014,25(3):319-323
Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.Transmission electron microscopy (TEM) has been an important technology in cell biology ever since it was first used in the early 1940s. The most frequently used TEM application in cell biology entails imaging stained thin sections of plastic-embedded cells by passage of an electron beam through the sample such that the beam will be absorbed and scattered, producing contrast and an image (see TermDefinitionBeem capsulePlastic forms that hold samples in resin during polymerizationBlocks (bullets)Polymerized samples in plastic removed from the Beem capsule and ready to sectionBlock faceSmall surface trimmed on a block before sectioningBoatWater reservoir in which sections float after being cut by a knifeCLEMCorrelative light and electron microscopyDehydrationRemoval of water from a sample by replacement with solventElectron tomography (ET)A method to image thick sections (200–300 nm) and produce three-dimensional imagesEmbeddingProcess of infiltrating the sample with resinFixationSample preservation with low temperature and/or chemicals to maintain sample integrityGridSmall metal support that holds the sections for viewing in the electron microscopeHPF/FSHigh-pressure freezing/freeze substitution sample preparation techniqueImmuno-EMDetection of proteins in EM samples using antibodiesIn-FXXKing credible!!!!Actual user quote in response to particularly beautiful sample. You may embellish with your own words.KnifeA very sharp edge, either glass or diamond, used to slice off resin-embedded samples into sectionsPre-embedding labelingApplication of antibodies before fixation and embeddingPost-embedding labelingApplication of antibodies to sections on the gridPoststainingStaining with heavy metals of sections on a gridResinLiquid form of the plastics used for embeddingRibbonCollection of serial sections placed on the gridSerials sectionsOne-after-the-other thin sections in a ribbonTEMTransmission electron microscopyThin sectionsThe 60- to 70-nm sections cut from the samples in blocksTrimmingProcess of cutting away excess resin to create a block faceUltramicrotomeInstrument used to cut sectionsVitrification/vitreous iceUnordered ice in which samples can be viewed without fix or stainOpen in a separate windowTEM has proven valuable in the analysis of nearly every cellular component, including the cytoskeleton, membrane systems, organelles, and cilia, as well as specialized structures in differentiated cells, such as microvilli and the synaptonemal complex. There is simply no way to visualize the complexity of cells and see cellular structures without TEM. Despite its power, the use of TEM does have limitations. Among the limitations are the relatively small data set of cells that can be imaged in detail, the obligate use of fixed—therefore deceased—cells, and the ever-present potential for fixation and staining artifacts. However, many of these artifacts are well known and have been catalogued (e.g., Bozzola and Russell, 1999 ; Maunsbach and Afzelius, 1999) .A typical TEM experiment consists of two phases: the live-cell experiment, in which a cell type, possibly a mutant, is grown under given conditions for analysis, followed by preparation of the specimen and imaging by TEM. Specimen preparation for conventional TEM is comprehensively reviewed in Hayat (1970) and briefly described here (Figure 1).Open in a separate windowFIGURE 1:A brief flowchart showing the work to be done with different types of sample preparation for conventional electron microscopy (yellow background). The advanced cryo-EM techniques are shown with a blue background. For immuno-EM, the samples can be stained before embedding (pre-embedding staining) or the sections can be stained (post-embedding staining).  相似文献   

12.
Structure-Function Analysis of Escherichia coli MnmG (GidA), a Highly Conserved tRNA-Modifying Enzyme     
Rong Shi  Magda Villarroya  Rafael Ruiz-Partida  Yunge Li  Ariane Proteau  Silvia Prado  Isma?l Moukadiri  Alfonso Benítez-Páez  Rodrigo Lomas  John Wagner  Allan Matte  Adrián Velázquez-Campoy  M.-Eugenia Armengod  Miroslaw Cygler 《Journal of bacteriology》2009,191(24):7614-7619
  相似文献   

13.
Isolation and Characterization of Xenorhabdus nematophila Transposon Insertion Mutants Defective in Lipase Activity against Tween     
Gregory R. Richards  Eugenio I. Vivas  Aaron W. Andersen  Delmarie Rivera-Santos  Sara Gilmore  Garret Suen  Heidi Goodrich-Blair 《Journal of bacteriology》2009,191(16):5325-5331
  相似文献   

14.
Intraspecies Signaling Involving the Diffusible Signal Factor BDSF (cis-2-Dodecenoic Acid) Influences Virulence in Burkholderia cenocepacia     
Robert P. Ryan  Yvonne McCarthy  Steven A. Watt  Karsten Niehaus  J. Maxwell Dow 《Journal of bacteriology》2009,191(15):5013-5019
  相似文献   

15.
Phage Display Selection of Cyclic Peptides That Inhibit Andes Virus Infection          下载免费PDF全文
Pamela R. Hall  Brian Hjelle  Hadya Njus  Chunyan Ye  Virginie Bondu-Hawkins  David C. Brown  Kathleen A. Kilpatrick  Richard S. Larson 《Journal of virology》2009,83(17):8965-8969
Specific therapy is not available for hantavirus cardiopulmonary syndrome caused by Andes virus (ANDV). Peptides capable of blocking ANDV infection in vitro were identified using antibodies against ANDV surface glycoproteins Gn and Gc to competitively elute a cyclic nonapeptide-bearing phage display library from purified ANDV particles. Phage was examined for ANDV infection inhibition in vitro, and nonapeptides were synthesized based on the most-potent phage sequences. Three peptides showed levels of viral inhibition which were significantly increased by combination treatment with anti-Gn- and anti-Gc-targeting peptides. These peptides will be valuable tools for further development of both peptide and nonpeptide therapeutic agents.Andes virus (ANDV), an NIAID category A agent linked to hantavirus cardiopulmonary syndrome (HCPS), belongs to the family Bunyaviridae and the genus Hantavirus and is carried by Oligoryzomys longicaudatus rodents (11). HCPS is characterized by pulmonary edema caused by capillary leak, with death often resulting from cardiogenic shock (9, 16). ANDV HCPS has a case fatality rate approaching 40%, and ANDV is the only hantavirus demonstrated to be capable of direct person-to-person transmission (15, 21). There is currently no specific therapy available for treatment of ANDV infection and HCPS.Peptide ligands that target a specific protein surface can have broad applications as therapeutics by blocking specific protein-protein interactions, such as preventing viral engagement of host cell receptors and thus preventing infection. Phage display libraries provide a powerful and inexpensive tool to identify such peptides. Here, we used selection of a cyclic nonapeptide-bearing phage library to identify peptides capable of binding the transmembrane surface glycoproteins of ANDV, Gn and Gc, and blocking infection in vitro.To identify peptide sequences capable of recognizing ANDV, we panned a cysteine-constrained cyclic nonapeptide-bearing phage display library (New England Biolabs) against density gradient-purified, UV-treated ANDV strain CHI-7913 (a gift from Hector Galeno, Santiago, Chile) (17, 18). To increase the specificity of the peptides identified, we eluted phage by using monoclonal antibodies (Austral Biologicals) prepared against recombinant fragments of ANDV Gn (residues 1 to 353) or Gc (residues 182 to 491) glycoproteins (antibodies 6B9/F5 and 6C5/D12, respectively). Peptide sequences were determined for phage from iterative rounds of panning, and the ability of phage to inhibit ANDV infection of Vero E6 cells was determined by immunofluorescent assay (IFA) (7). Primary IFA detection antibodies were rabbit polyclonal anti-Sin Nombre hantavirus (SNV) nucleoprotein (N) antibodies which exhibit potent cross-reactivity against other hantavirus N antigens (3). ReoPro, a commercially available Fab fragment which partially blocks infection of hantaviruses in vitro by binding the entry receptor integrin β3 (5), was used as a positive control (80 μg/ml) along with the original antibody used for phage elution (5 μg/ml). As the maximum effectiveness of ReoPro in inhibiting hantavirus entry approaches 80%, we set this as a threshold for maximal expected efficacy for normalization. The most-potent phage identified by elution with the anti-Gn antibody 6B9/F5 bore the peptide CPSNVNNIC and inhibited hantavirus entry by greater than 60% (61%) (Table (Table1).1). From phage eluted with the anti-Gc antibody 6C5/D12, those bearing peptides CPMSQNPTC and CPKLHPGGC also inhibited entry by greater than 60% (66% and 72%, respectively).

TABLE 1.

Peptide-bearing phage eluted from ANDV
Phage% Inhibition (SD)aP valueb
Phage bearing the following peptides eluted with anti-Gn antibody 6B9/F5
    Group 1 (<30% inhibition)
        CDQRTTRLC8.45 (15.34)0.0002
        CPHDPNHPC9.94 (7.72)0.333
        CQSQTRNHC11.76 (13.25)0.0001
        CLQDMRQFC13.26 (9.92)0.0014
        CLPTDPIQC15.70 (14.05)0.0005
        CPDHPFLRC16.65 (15.22)0.8523
        CSTRAENQC17.56 (16.50)0.0004
        CPSHLDAFC18.98 (20.06)0.0017
        CKTGHMRIC20.84 (7.47)0.0563
        CVRTPTHHC20.89 (27.07)0.1483
        CSGVINTTC21.57 (19.61)0.0643
        CPLASTRTC21.65 (5.98)0.004
        CSQFPPRLC22.19 (8.26)0.0004
        CLLNKQNAC22.34 (7.78)0.001
        CKFPLNAAC22.89 (6.15)0.0001
        CSLTPHRSC23.63 (16.74)0.0563
        CKPWPMYSC23.71 (6.68)0.0643
        CLQHDALNC24.01 (7.60)1
        CNANKPKMC24.67 (11.67)0.0004
        CPKHVLKVC25.30 (28.36)0.0003
        CTPDKKSFC26.91 (11.15)0.399
        CHGKAALAC27.22 (32.53)0.005
        CNLMGNPHC28.08 (21.35)0.0011
        CLKNWFQPC28.64 (18.49)0.0016
        CKEYGRQMC28.76 (29.33)0.0362
        CQPSDPHLC29.44 (31.22)0.0183
        CSHLPPNRC29.70 (17.37)0.0061
    Group 2 (30-59% inhibition)
        CSPLLRTVC33.05 (20.26)0.0023
        CHKGHTWNC34.17 (12.50)0.0795
        CINASHAHC35.62 (13.03)0.3193
        CWPPSSRTC36.75 (26.95)0.0006
        CPSSPFNHC37.78 (7.11)0.0001
        CEHLSHAAC38.47 (7.60)0.0115
        CQDRKTSQC38.74 (9.12)0.1802
        CTDVYRPTC38.90 (25.03)0.006
        CGEKSAQLC39.11 (27.52)0.0013
        CSAAERLNC40.13 (6.33)0.0033
        CFRTLEHLC42.07 (5.01)0.0608
        CEKLHTASC43.60 (27.92)0.1684
        CSLHSHKGC45.11 (49.81)0.0864
        CNSHSPVHC45.40 (28.80)0.0115
        CMQSAAAHC48.88 (44.40)0.5794
        CPAASHPRC51.84 (17.09)0.1935
        CKSLGSSQC53.90 (13.34)0.0145
    Group 3 (60-79% inhibition)
        CPSNVNNIC61.11 (25.41)0.1245
Negative control0 (6.15)
6B9/F5 (5 μg/ml)26.77 (5.33)
ReoPro (80 μg/ml)79.86 (4.88)
Phage bearing the following peptides eluted with anti-Gc antibody 6C5/D12
    Group 1 (<30% inhibition)
        CHPGSSSRC1.01 (7.03)0.0557
        CSLSPLGRC10.56 (13.62)0.7895
        CTARYTQHC12.86 (3.83)0.3193
        CHGVYALHC12.91 (7.32)0.0003
        CLQHNEREC16.79 (13.72)0.0958
        CHPSTHRYC17.23 (14.53)0.0011
        CPGNWWSTC19.34(9.91)0.1483
        CGMLNWNRC19.48 (19.42)0.0777
        CPHTQFWQC20.44 (13.65)0.0008
        CTPTMHNHC20.92 (11.68)0.0001
        CDQVAGYSC21.79 (23.60)0.0063
        CIPMMTEFC24.33 (9.28)0.2999
        CERPYSRLC24.38 (9.09)0.0041
        CPSLHTREC25.06 (22.78)0.1202
        CSPLQIPYC26.30 (34.29)0.4673
        CTTMTRMTC (×2)29.27 (8.65)0.0001
    Group 2 (30-59% inhibition)
        CNKPFSLPC30.09 (5.59)0.4384
        CHNLESGTC31.63 (26.67)0.751
        CNSVPPYQC31.96 (6.51)0.0903
        CSDSWLPRC32.95 (28.54)0.259
        CSAPFTKSC33.40 (10.64)0.0052
        CEGLPNIDC35.63 (19.90)0.0853
        CTSTHTKTC36.28 (13.42)0.132
        CLSIHSSVC36.40 (16.44)0.8981
        CPWSTQYAC36.81 (32.81)0.5725
        CTGSNLPIC36.83 (31.64)0.0307
        CSLAPANTC39.73 (4.03)0.1664
        CGLKTNPAC39.75 (16.98)0.2084
        CRDTTPWWC40.08 (18.52)0.0004
        CHTNASPHC40.26 (4.77)0.5904
        CTSMAYHHC41.89 (8.61)0.259
        CSLSSPRIC42.13 (29.75)0.2463
        CVSLEHQNC45.54 (6.55)0.5065
        CRVTQTHTC46.55 (8.45)0.3676
        CPTTKSNVC49.28 (14.00)0.3898
        CSPGPHRVC49.50 (42.60)0.0115
        CKSTSNVYC51.20 (4.60)0.0611
        CTVGPTRSC57.30 (11.31)0.0176
    Group 3 (60-79% inhibition)
        CPMSQNPTC65.60 (13.49)0.014
        CPKLHPGGC71.88 (27.11)0.0059
Negative control0.26 (4.53)
6C5/D12 (5 μg/ml)22.62 (8.40)
ReoPro (80 μg/ml)80.02 (76.64)
Open in a separate windowaStandard deviations of four experiments are shown in parentheses. Peptide-bearing phage were added at 109 phage/μl.bP values for the pairwise amino acid alignment score of each peptide versus that of integrin β3 were determined using an unpaired Student''s t test. P values considered statistically significant are shown in bold.To determine whether the peptide sequences of any of the identified inhibitory phage showed homology to integrin β3, a known entry receptor for pathogenic hantaviruses (6, 7), we used the Gap program to perform a pairwise amino acid alignment of each peptide versus the extracellular portion of integrin β3 and determined P values for the alignments. Of 45 phage eluted with the anti-Gn antibody, 6B9/F5, 27 of the peptide sequences showed homology to integrin β3 (P < 0.05), and 9 were highly significant (P ≤ 0.0005) (Fig. (Fig.1A).1A). Of the latter, CKFPLNAAC and CSQFPPRLC map to the hybrid domain (Fig. (Fig.1B),1B), which is proximal to the plexin-semaphorin-integrin domain (PSI) containing residue D39, shown to be critical for viral entry in vitro (19). Five sequences (CPSSPFNH, CPKHVLKVC, CNANKPKMC, CQSQTRNHC, and CDQRTTRLC) map to the I-like (or βA) domain near the binding site of ReoPro (2). Finally, CLPTDPIQC maps to the epidermal growth factor 4 (EGF-4) domain, and CSTRAENQC aligns to a portion of β3 untraceable in the crystal structure, specifically the linker region between the hybrid domain and EGF-1. Although this represents a disordered portion of the protein (22), the location of this loop proximal to the PSI domain is worth noting, due to the role of the PSI domain in facilitating viral entry (19). Therefore, 60% of phage eluted with the anti-Gn antibody showed some homology to integrin β3, and those with highly significant P values predominantly mapped to or proximal to regions of known interest in viral entry.Open in a separate windowFIG. 1.Inhibitory peptides identified through phage panning against ANDV show homology to integrin β3. (A) Alignment of phage peptide sequences with P values for integrin β3 pairwise alignment of less than 0.05. Residues comprising the signal peptide, transmembrane, and cytoplasmic domains, which were not included during pairwise alignment, are underlined. Residues 461 to 548, which are missing in the crystal structure, are italicized. Residues involved in the ReoPro binding site are highlighted in green (2). Residue D39 of the PSI domain is highlighted in yellow (19). Peptides are shown above the sequence of integrin β3, with antibody 6C5/D12-eluted sequences shown in blue text and sequences eluted with antibody 6B9/F5 shown in red. Peptide sequences with alignment P values of ≤0.0005 are highlighted in yellow. Percent inhibition of the peptide-bearing phage is shown in parentheses. (B) View of integrin αvβ3 (PDB ID 1U8C [23]). αv is shown in blue ribbon diagram, and β3 is shown in salmon-colored surface representation, with specific domains circled. Residues corresponding to the ReoPro binding site are shown in green, as in panel A, and D39 is shown in yellow. Regions corresponding to 6C5/D12-eluted peptides with P values of ≤0.0005 for alignment with integrin β3 (highlighted in panel A) are shown in blue, and those corresponding to 6B9/F5-eluted peptides with P values of ≤0.0005 for alignment with integrin β3 are shown in red. Alignment of peptide PLASTRT (P value of 0.0040) adjacent to D39 of the PSI domain is shown in magenta. Graphics were prepared using Pymol (DeLano Scientific LLC, San Carlos, CA).Of the 41 peptide-bearing phage eluted with the anti-Gc antibody 6C5/D12, 14 showed sequence homology to integrin β3 (P < 0.05), 4 of which had P values of ≤0.0005 (Fig. (Fig.1A).1A). Of the latter, sequence CTTMTRMTC mapped to the base of the I-like domain (Fig. (Fig.1B),1B), while CHGVYALHC and CRDTTPWWC mapped to the EGF-3 domain. Finally, sequence CTPTMHNHC mapped to the linker region untraceable in the crystal structure. Therefore, in contrast to peptide sequences identified by competition with the anti-Gn antibody, sequences identified by competition with the anti-Gc antibody 6C5/D12 appear to be mostly unrelated to integrin β3.As a low level of pathogenic hantavirus infection can be seen in cells lacking integrin β3, such as CHO cells (19), we asked if any of the identified peptide sequences could represent a previously unidentified receptor. We used the Basic Local Alignment Search Tool to search a current database of human protein sequences for potential alternate receptors represented by these peptides. However, none of the alignments identified proteins that are expressed at the cell surface, eliminating them as potential candidates for alternate viral entry receptors. This suggests that the majority of the peptides identified here likely represent novel sequences for binding ANDV surface glycoproteins.To determine whether synthetic peptides would also block infection, we synthesized cyclic peptides based on the 10 most-potent peptide-bearing phage. These peptides, in the context of phage presentation, showed levels of inhibition ranging from 44 to 72% (Table (Table2).2). When tested by IFA at 1 mM, four of the synthetic peptides showed inhibition levels significantly lower than those of the same peptide presented in the context of phage. This is not surprising, as steric factors due to the size of the phage and the multivalent presentation of peptide in the context of phage may both contribute to infection inhibition (8). However, there was no significant difference in inhibition by synthetic peptide versus peptide-bearing phage for six of the sequences, implying that inhibition in the context of phage was due solely to the nature of the peptide itself and not to steric factors or valency considerations contributed by the phage, which contrasts with our previous results, determined by using phage directed against αvβ3 integrin (10).

TABLE 2.

Synthetic cyclic peptides inhibit ANDV infection
TargetSample% Inhibition bya:
Peptide-bearing phageSynthetic peptide
GnCMQSAAAHC48.88 (44.40)59.66 (11.17)
GcCTVGPTRSC57.30 (11.31)46.47 (7.61)
GnCPSNVNNIC61.11 (25.41)44.14 (10.74)
GnCEKLHTASC43.60 (27.92)34.87 (9.26)
GcCPKLHPGGC71.88 (27.11)30.95 (7.73)b
GnCSLHSHKGC45.11 (49.81)29.79 (9.34)
GcCPMSQNPTC65.60 (13.49)18.19 (8.55)b
GnCKSLGSSQC53.90 (13.34)18.10 (7.55)b
GnCNSHSPVHC45.40 (28.80)15.52 (10.48)
GnCPAASHPRC51.84 (17.09)0 (10.72)b
Integrin β3ReoPro80.10 (7.72)
Gn6B9/F5 antibody42.72 (6.75)
Gc6C5/D12 antibody31.04 (7.81)
Open in a separate windowaStandard deviations of the results of at least four experiments are shown in parentheses.bMean percent inhibition between phage and synthetic peptide differs significantly (P < 0.05).The three most-potent synthetic peptides were examined for their ability to inhibit ANDV entry in a dose-dependent manner. The concentration of each peptide that produces 50% of its maximum potential inhibitory effect was determined. As shown in Fig. Fig.2A,2A, the 50% inhibitory concentration for each of the peptides was in the range of 10 μM, which from our experience is a reasonable potency for a lead compound to take forward for optimization.Open in a separate windowFIG. 2.Activities of synthetic peptides in inhibition of ANDV infection in vitro. (A) Peptides were examined for their ability to block ANDV infection of Vero E6 cells in a dose-dependent manner by IFA. (B) Peptides were tested in parallel for the ability to block infection of Vero E6 cells by ANDV, SNV, HTNV, and PHV. (C) Peptides were tested, singly or in combination, for the ability to block ANDV infection of Vero E6 cells. For all experiments, controls included media, ReoPro at 80 μg/ml, and monoclonal antibodies 6C5/D12 and 6B9/F5 at 5 μg/ml. All peptides were used at 1 mM. Data points represent n = 2 to 6, with error bars showing the standard errors of the means. Statistical analyses were performed on replicate samples using an unpaired Student''s t test.In order to determine the specificity of the three most-potent synthetic cyclic peptides in blocking ANDV, we examined them for inhibition of ANDV infection versus two other pathogenic hantaviruses, SNV and Hantaan virus (HTNV), or the nonpathogenic hantavirus Prospect Hill virus (PHV). As shown in Fig. Fig.2B,2B, ReoPro, which binds integrin β3, showed inhibition of infection by each of the pathogenic hantavirus strains, known to enter cells via β3, but not the nonpathogenic PHV, which enters via integrin β1 (6, 7). In contrast, peptides selected for the ability to bind ANDV were highly specific inhibitors of ANDV versus SNV, HTNV, or PHV. The specificities of peptides eluted by the anti-Gn monoclonal antibody are not surprising, as they are likely due to global differences in the Gn amino acid sequence. Specifically, sequence homologies between ANDV and SNV, HTNV, and PHV are 61%, 36%, and 51%, respectively, for the region corresponding to the immunogen for antibody 6B9/F5. Although homology between the immunogen for antibody 6C5/D12 and the corresponding Gc region of these viruses is somewhat higher (82% with SNV, 63% with HTNV, and 71% with PHV), the possibility that the monoclonal antibody used here recognizes a three-dimensional epitope lends itself to the high specificity of the peptides.The current model for cellular infection by hantaviruses (14) is as follows. Viral binding of the host cell surface target integrin is followed by receptor-mediated endocytosis and endosome acidification. Lowered pH induces conformational changes in Gn and/or Gc, which facilitate membrane fusion and viral release into the cytosol. As there is currently little information available about whether one glycoprotein is dominant in mediating infection, and as neutralizing epitopes have been found on both Gn and Gc glycoproteins (1, 4, 12, 13, 20), we examined whether combining anti-Gn- and anti-Gc-targeted synthetic peptides would lead to an increased infection blockade compared to those for single treatments. As shown in Fig. Fig.2C,2C, the combination of anti-Gn and anti-Gc peptides CMQSAAAHC and CTVGPTRSC resulted in a significant increase in infection inhibition (P = 0.0207 for CMQSAAAHC, and P = 0.0308 for CTVGPTRSC) compared to that resulting from single treatments. Although the high specificity of the peptides for ANDV makes it unlikely that this combination treatment will lead to more cross-reactivity with other pathogenic hantaviruses, this can be determined only by additional testing. Regardless, these data suggest a unique role for each of these viral proteins in the infection process as well as the benefits of targeting multiple viral epitopes for preventing infection.To our knowledge, the peptides reported here are the first identified that directly target ANDV, and this work further illustrates the power of coupling phage display and selective elution techniques in the identification of novel peptide sequences capable of specific protein-protein interactions from a large, random pool of peptide sequences. These novel peptide inhibitors (R. S. Larson, P. R. Hall, H. Njus, and B. Hjelle, U.S. patent application 61/205,211) provide leads for the development of more-potent peptide or nonpeptide organics for therapeutic use against HCPS.  相似文献   

16.
Downregulation of Robust Acute Type I Interferon Responses Distinguishes Nonpathogenic Simian Immunodeficiency Virus (SIV) Infection of Natural Hosts from Pathogenic SIV Infection of Rhesus Macaques     
Levelle D. Harris  Brian Tabb  Donald L. Sodora  Mirko Paiardini  Nichole R. Klatt  Daniel C. Douek  Guido Silvestri  Michaela Müller-Trutwin  Ivona Vasile-Pandrea  Cristian Apetrei  Vanessa Hirsch  Jeffrey Lifson  Jason M. Brenchley  Jacob D. Estes 《Journal of virology》2010,84(15):7886-7891
  相似文献   

17.
Identification of Enhancer Binding Proteins Important for Myxococcus xanthus Development     
Krista M. Giglio  Jessica Eisenstatt  Anthony G. Garza 《Journal of bacteriology》2010,192(1):360-364
  相似文献   

18.
New Design Strategy for Development of Specific Primer Sets for PCR-Based Detection of Chlorophyceae and Bacillariophyceae in Environmental Samples     
Claire Valiente Moro  Olivier Crouzet  Séréna Rasconi  Antoine Thouvenot  Gérard Coffe  Isabelle Batisson  Jacques Bohatier 《Applied and environmental microbiology》2009,75(17):5729-5733
  相似文献   

19.
Sequences from Ancestral Single-Stranded DNA Viruses in Vertebrate Genomes: the Parvoviridae and Circoviridae Are More than 40 to 50 Million Years Old     
Vladimir A. Belyi  Arnold J. Levine  Anna Marie Skalka 《Journal of virology》2010,84(23):12458-12462
Vertebrate genomic assemblies were analyzed for endogenous sequences related to any known viruses with single-stranded DNA genomes. Numerous high-confidence examples related to the Circoviridae and two genera in the family Parvoviridae, the parvoviruses and dependoviruses, were found and were broadly distributed among 31 of the 49 vertebrate species tested. Our analyses indicate that the ages of both virus families may exceed 40 to 50 million years. Shared features of the replication strategies of these viruses may explain the high incidence of the integrations.It has long been appreciated that retroviruses can contribute significantly to the genetic makeup of host organisms. Genes related to certain other viruses with single-stranded RNA genomes, formerly considered to be most unlikely candidates for such contribution, have recently been detected throughout the vertebrate phylogenetic tree (1, 6, 13). Here, we report that viruses with single-stranded DNA (ssDNA) genomes have also contributed to the genetic makeup of many organisms, stretching back as far as the Paleocene period and possibly the late Cretaceous period of evolution.Determining the evolutionary ages of viruses can be problematic, as their mutation rates may be high and their replication may be rapid but also sporadic. To establish a lower age limit for currently circulating ssDNA viruses, we analyzed 49 published vertebrate genomic assemblies for the presence of sequences derived from the NCBI RefSeq database of 2,382 proteins from known viruses in this category, representing a total of 23 classified genera from 7 virus families. Our survey uncovered numerous high-confidence examples of endogenous sequences related to the Circoviridae and to two genera in the family Parvoviridae: the parvoviruses and dependoviruses (Fig. (Fig.11).Open in a separate windowFIG. 1.Phylogenetic tree of vertebrate organisms and history of ssDNA virus integrations. Times of integration of ancestral dependoviruses (yellow icosahedrons), parvoviruses (blue icosahedrons), and circoviruses (triangles) are approximate.The Dependovirus and Parvovirus genomes are typically 4 to 6 kb in length, include 2 major open reading frames (encoding replicase proteins [Rep and NS1, respectively] and capsid proteins [Cap and VP1, respectively]), and have characteristic hairpin structures at both ends (Fig. (Fig.2).2). For replication, these viruses depend on host enzymes that are recruited by the viral replicase proteins to the hairpin regions, where self-primed viral DNA synthesis is initiated (2). Circovirus genomes are typically ∼2-kb circles. DNA of the type species, porcine circovirus 1 (PCV-1), contains a stem-loop structure within the origin of replication (Fig. (Fig.2),2), and the largest open reading frame includes sequences that are homologous to the Parvovirus replicase open reading frame (9, 11). The circoviruses also depend on host enzymes for replication, and DNA synthesis is self-primed from a 3′-OH end formed by endonucleolytic cleavage of the stem-loop structure (4). The frequency of Dependovirus infection is estimated to be as high as 90% within an individual''s lifetime. None of the dependoviruses have been associated with human disease, but related viruses in the family Parvoviridae (e.g., erythrovirus B19 and possibly human bocavirus) are pathogenic for humans, and members of both the Parvoviridae and the Circoviridae can cause a variety of animal diseases (2, 4).Open in a separate windowFIG. 2.Schematics illustrating the structure and organization of Parvoviridae and Circoviridae genomes and origins of several of the longest-integrated ancestral viral sequences found in vertebrates. Integrations were aligned to the Dependovirus adeno-associated virus 2 (AAV2), the Parvovirus minute virus of mice (MVM), and the Circovirus porcine circovirus 1 (PCV-1). The inverted terminal repeat (ITR) sequences in the Dependovirus and Parvovirus genomes are depicted on an expanded scale. A linear representation of the circular genome of PCV-1 is shown with the 10-bp stem-loop structure on an expanded scale. Horizontal lines beneath the maps indicate the lengths of similar sequences that could be identified by BLAST. The numbers indicate the locations of amino acids in the viral proteins where the sequence similarities in the endogenous insertions start and end. The actual ancestral virus-derived integrated sequences may extend beyond the indicated regions.With some ancestral endogenous sequences that we identified, phylogenetic comparisons can be used to estimate age. For example, as a Dependovirus-like sequence is present at the same location in the genomes of mice and rats, the ancestral virus must have existed before their divergence, more than 20 million years ago. Some Circovirus- and Dependovirus-related integrations also predate the split between dog and panda, about 42 million years ago. However, in most other cases, we rely on an indirect method for estimating age (1). As genomic sequences evolve, they accumulate new stop codons and insertion/deletion-induced frameshifts. The rates of these events can be tied directly to the rates of neutral sequence drift and, therefore, the time of evolution. To apply this method, we first performed a BLAST search of vertebrate genomes for all known ssDNA virus proteins (BLAST options, -p tblastn -M BLOSUM62 -e 1e−4). Candidate sequences were then recorded, along with 5 kb of flanking regions, and then again aligned against the database of ssDNA viruses to find the most complete alignment (BLAST options, -t blastx -F F -w 15 -t 1500 -Z 150 -G 13 -E 1 -e 1e−2). Detected alignments were then compared with a neutral model of genome evolution, as described in the supplemental material, and the numbers of stop codons and frameshifts were converted into the expected genomic drift undergone by the sequences. The age of integration was then estimated from the known phylogeny of vertebrates (7, 10). Using these methods, we discovered that as many as 110 ssDNA virus-related sequences have been integrated into the 49 vertebrate genomes considered, during a time period ranging from the present to over 40 to 60 million years ago (Table (Table1;1; see also Tables S1 to S3 in the supplemental material).

TABLE 1.

Selected endogenous sequences in vertebrate genomes related to single-stranded DNA viruses
Virus group and vertebrate speciesInitial genomic search using TBLASTN
Best sequence homology identified using BLASTX
Predicted nucleotide drift (%)Integration labelAge (million yr) or timing of integration based on sequence aging
Chromosomal or scaffold locationProteinBLAST E value/% sequence identityMost similar virusaProteinCoordinatesNo. of stop codons/frameshifts
Circoviruses
    CatScaffold_62068Rep6E−05/37Canary circovirusRep4-2833/7 in 268 aab14.2fcECLG-182
Scaffold_24038Rep6E−06/51Columbid circovirusRep44-3174/5 in 231 aac15.2fcECLG-287
    DogChr5dRep7E−16/46Raven circovirusRep16-2636/5 in 250 aa17.6cfECLG-198
Chr22Rep1E−14/43Beak and feather disease virusRep7-2642/1 in 261 aac4.5cfECLG-254
    OpossumChr3Rep4E−46/44Finch circovirusRep2-2910/2 in 282 aa2.3mdECLG12
Cap6-360/0 in 30 aa
Dependoviruses
    DogChrXRep6E−05/55AAV5Rep239-4453/4 in 200 aa14.0cfEDLG-178
    DolphinGeneScaffold1475Rep8E−39/39Avian AAV DA1Rep79-4863/4 in 379 aac6.6ttEDLG-255
Cap4E−61/47Cap1-7384/7 in 678 aac
    ElephantScaffold_4Rep0/55AAV5Rep3-5890/0 in 579 aa0.0laEDLGRecent
    HyraxGeneScaffold5020Cap3E−34/53AAV3Cap485-7350/5 in 256 aa7.0pcEDLG-129
Scaffold_19252Rep9E−72/47Bovine AAVRep2-3488/4 in 348 aa14.3pcEDLG-260
    MegabatScaffold_5601Rep2E−13/31AAV2Rep315-4791/5 in 175 aa13.1pvEDLG-376
    MicrobatGeneScaffold2026Rep1E−117/50AAV2Rep1-6172/5 in 612 aa5.8mlEDLG-127
Cap9E−33/51Cap1-7312/9 in 509 aac
Scaffold_146492Cap6E−32/42AAV2Cap479-7320/3 in 252 aa4.2mlEDLG-219
    MouseChr1Rep2E−06/34AAV2Rep4-2063/5 in 191 aa17.1mmEDLG-139
Chr3Rep2E−24/31AAV5Rep71-47812/7 in 389 aa16.5mmEDLG-237
Cap2E−22/45Cap22-72412/10 in 649aac
Chr8Rep1E−08/46AAV2Rep314-4733/3 in 147 aa13.8mmEDLG-331
Cap1-1371/2 in 114 aa
    PandaScaffold2359Rep2E−06/37Bovine AAVRep238-4262/3 in 186 aa10.4amEDLG-159
    PikaScaffold_9941Rep4E−14/28AAV5Rep126-4152/2 in 282 aa5.4opEDLG14
    PlatypusChr2Rep9E−10/35Bovine AAVRep297-4374/3 in 138 aa17.1oaEDLG-179
Cap272-4191/2 in 150 aac
Contig12430Rep2E−09/47Bovine AAVRep353-4503/1 in 123 aa12.0oaEDLG-255
Cap2E−05/32Cap253-3672/1 in 116 aa
    RabbitChr10Rep3E−97/39AAV2Rep1-6193/9 in 613 aa9.3ocEDLG43
Cap5E−50/45Cap1-72310/9 in 675 aa
    RatChr13Rep2E−09/33AAV2Rep4-1752/4 in 177 aa13.3rnEDLG-128
Chr2Rep4E−18/40AAV5Rep1-46112/12 in 454 aa22.7rnEDLG-251
Chr19Rep2E−07/33AAV5Rep329-4642/4 in 136 aa16.1rnEDLG-335
Cap31-1332/1 in 93 aa
    TarsierScaffold_178326Rep4E−14/23AAV5Rep96-4652/3 in 356 aa5.3tsEDLG23
Parvoviruses
    Guinea pigScaffold_188Rep3E−24/46Porcine parvovirusRep313-5675/3 in 250 aa12.3cpEPLG-140
Cap1E−16/36Cap10-68911/12 in 672 aa
Scaffold_27Rep1E−50/39Canine parvovirusRep11-6401/4 in 616 aa5.3cpEPLG-217
Cap1E−38/39Porcine parvovirusCap3-7192/14 in 700 aa
    TenrecScaffold_260946Rep2E−20/38LuIII virusRep406-5984/4 in 190 aa19.0etEPLG-260
Cap11-63916/15 in 595 aa
    RatChr5Rep6E−10/56Canine parvovirusRep1-2820/0 in 312 aa0.6rnEPLGRecent
Cap0/62Cap637-6670/2 in 760 aa
Rep0/631-751
    OpossumChr3Rep2E−39/33LuIII virusRep7-57011/3 in 502 aa10.9mdEPLG-256
Cap7E−8/33Cap11-72914/7 in 704 aa
Chr6Rep6E−58/44Porcine parvovirusRep16-5633/7 in 534 aac4.6mdEPLG-324
Cap6E−60/38Cap10-7152/5 in 707 aac
    WallabyScaffold_108040Rep4E−74/62Canine parvovirusRep341-6450/0 in 287 aa1.3meEPLG-37
Cap8E−37/32Cap35-7380/4 in 687 aa
Scaffold_72496Rep2E−61/42Porcine parvovirusRep23-5674/3 in 531 aa5.7meEPLG-630
Cap2E−31/38Cap10-5326/4 in 514 aa
Scaffold_88340Rep7E−37/55Mouse parvovirus 1Rep344-5660/3 in 223 aa6.7meEPLG-1636
Cap7E−22/33Cap11-7136/9 in 700 aa
Open in a separate windowaSome ambiguity in choosing the most similar virus is possible. We generally used the alignment with the lowest E value in the BLAST results. However, one or two points in the exponent of an E value were sometimes sacrificed to achieve a longer sequence alignment.baa, amino acids.cThese sequences have long insertions compared to the present-day viruses. In all cases tested, these insertions originated from short interspersed elements (SINEs). These insertions were excluded from the counts of stop codons and frameshifts and the estimation of integration age.dChr, chromosome.It is important to recognize that there is an intrinsic limit on how far back in time we can reach to identify ancient endogenous viral sequences. First, the sequences must be identified with confidence by BLAST or similar programs. This requirement places a lower limit on sequence identity at about 20 to 30% of amino acids, or about 75% of nucleotides (nucleotides evolve nearly 2.5 times slower than the amino acid sequence they encode). Second, the related, present-day virus must have evolved at a rate that is not much higher than that of the endogenous sequences. The viruses for which ancestral endogenous sequences were identified in this study exhibit sequence drift similar to that associated with mammalian genomes. Setting this rate at 0.14% per million years of evolution (8), we arrive at 90 million years as the theoretical limit for the oldest sequences that can be identified using our methods. This limit drops to less than 35 million years for endogenous viral sequences in rodents and even lower for sequences related to viruses that evolve faster than mammalian genomes.The most widespread integrations found in our survey are derived from the dependoviruses. These include nearly complete genomes related to adeno-associated virus (AAV) in microbat, wallaby, dolphin, rabbit, mouse, and baboon (Fig. (Fig.2).2). We did not detect inverted terminal repeats in several integrations tested, even though repeats are common in the present-day dependoviruses. This result could be explained by sequence decay or the absence of such structures in the ancestral viruses. However, we do see sequences that resemble degraded hairpin structures to which Dependovirus Rep proteins bind, with an example from microbat integration mlEDLG-1 shown in Fig. Fig.3.3. The second most widespread endogenous sequences are related to the parvoviruses. They are found in 6 of 49 vertebrate species considered, with nearly complete genomes in rat, opossum, wallaby, and guinea pig (Fig. (Fig.22).Open in a separate windowFIG. 3.Hairpin structure of the inverted terminal repeat of adeno-associated virus 2 (left) and a candidate degraded hairpin structure located close to the 5′ end of the mlEDLG-1 integration in microbats (right). Structures and mountain plots were generated using default parameters of the RNAfold program (5), with nucleotide coloring representing base-pairing probabilities: blue is below average, green is average, and red is above average. Mountain plots represent hairpin structures based on minimum free energy (mfe) calculations and partition function (pf) calculations, as well as the centroid structure (5). Height is expressed in numbers of nucleotides; position represents nucleotide.The Dependovirus AAV2 has strong bias for integration into human chromosome 19 during infection, driven by a host sequence that is recognized by the viral Rep protein(s). Rep mediates the formation of a synapse between viral and cellular sequences, and the cellular sequences are nicked to serve as an origin of viral replication (14). The related integrations in mice and rats, located in the same chromosomal locations, might be explained by such a mechanism. However, the extent of endogenous sequence decay and the frequency of stop codons indicate that these integrations occurred some 30 to 35 million years ago, implying that they are derived from a single event in a rodent ancestor rather than two independent integration events at the same location. Similarly, integrations EDLG-1 in dog and panda lie in chromosomal regions that can be readily aligned (based on University of California—Santa Cruz [UCSC] genome assemblies) and show sequence decay consistent with the age of the common ancestor, about 42 million years. Endogenous sequences related to the family Parvoviridae can thus be traced to over 40 million years back in time, and viral proteins related to this family have remained over 40% conserved.Sequences related to circoviruses were detected in five vertebrate species (Table (Table11 and Table S1 in the supplemental material). At least one of these sequences, the endogenous sequence in opossum, likely represents a recent integration. Several integrations in dog, cat, and panda, on the other hand, appear to date from at least 42 million years ago, which is the last time when pandas and dogs shared a common ancestor. We see evidence for this age in data from sequence degradation (Table (Table1),1), phylogenetic analyses of endogenous Circovirus-like genomes (see Fig. S2 in the supplemental material), and genomic synteny where integration ECLG-3 is surrounded by genes MTA3 and ARID5A in both dog and panda and integration ECLG-2 lies 35 to 43 kb downstream of gene UPF3A. In fact, Circovirus integrations may even precede the split between dogs and cats, about 55 million years ago, although the preliminary assembly and short genomic contigs for cats make synteny analysis impossible.The most common Circovirus-related sequences detected in vertebrate genomes are derived from the rep gene. We speculate that, like those of the Parvoviridae, the ancestral Circoviridae sequences might have been copied using a primer sequence in the host DNA that resembled the viral origin and was therefore recognized by the virus Rep protein. Higher incidence of rep gene identifications may represent higher conservation of this gene with time, or alternatively, possession of these sequences may impart some selective advantage to the host species. The largest Circovirus-related integration detected, in the opossum, comprises a short fragment of what may have been the cap gene immediately adjacent to and in the opposite orientation from the rep gene. This organization is similar to that of the present day Circovirus genome in which these genes share a promoter in the hairpin regions but are translated in opposite directions (Fig. (Fig.22).In summary, our results indicate that sequences derived from ancestral members of the families Parvoviridae and Circoviridae were integrated into their host''s genomes over the past 50 million years of evolution. Features of their replication strategies suggest mechanisms by which such integrations may have occurred. It is possible that some of the endogenous viral sequences could offer a selective advantage to the virus or the host. We note that rep open reading frame-derived proteins from some members of these families kill tumor cells selectively (3, 12). The genomic “fossils” we have discovered provide a unique glimpse into virus evolution but can give us only a lower estimate of the actual ages of these families. However, numerous recent integrations suggest that their germ line transfer has been continuing into present times.   相似文献   

20.
The Diagnosis and Management of Hereditary Haemochromatosis     
Paul Clark  Laurence J Britton  Lawrie W Powell 《The Clinical biochemist. Reviews / Australian Association of Clinical Biochemists》2010,31(1):3-8
Hereditary haemochromatosis (HH) is a common genetic disorder of iron metabolism in individuals of Northern European ancestry which leads to inappropriate iron absorption from the intestine and iron overload in susceptible individuals. Iron overload is suggested by elevations in serum ferritin and transferrin saturation. The majority of patients with clinically significant iron overload are homozygous for the C282Y mutation of the HFE gene, however only a minority of C282Y homozygotes fully express the disease clinically. Those with a high serum ferritin (>1000 μg/L) and additional hepatic insults from cofactors are more likely to develop cirrhosis and its complications. The mainstay of treatment is venesection. Those without cirrhosis who undergo appropriate venesection have a normal life expectancy. Family screening is recommended for all first degree relatives of an individual with the disease.HH refers to a group of inherited disorders that result in progressive iron overload. Mutations of the HFE gene are responsible for the majority of cases of HH,1 although disease expression is highly variable.2 The ready availability of testing for the two clinically relevant mutations: C282Y and H63D, has substantially altered the approach to suspected iron overload in clinical practice. A number of rare but important forms of non-HFE related HH have also been described.3 The other main causes of iron overload are outlined in the HH HFE related HH (C282Y/C282Y, C282Y/H63D) Non-HFE related HH  Juvenile Haemochromatosis   Hemojuvelin related   Hepcidin related  Transferrin receptor-2 related HH Ferroportin related HHSecondary Iron Overload Iron loading anaemia  Thalassaemia major  Sideroblastic anaemia  Chronic haemolytic anaemia Parenteral iron overload (multiple transfusions)Others Metabolic syndrome Chronic liver disease  Hepatitis C  Alcoholic liver disease  Non-alcoholic steatohepatitis  Porphyria cutanea tarda African Iron Overload Acaeruloplasminaemia Atransferrinaemia Neonatal iron overloadOpen in a separate window  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号