首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.  相似文献   

4.
5.
Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.  相似文献   

6.
7.
M Okada  J Vergne    J Brahms 《Nucleic acids research》1978,5(6):1845-1862
E. Coli RNA polymerase binding to different DNAs (from E. Coli, 5-bromodeoxyuridine (BrdUrd) substituted DNA and poly [d(BrU-A)] was induced with ultraviolet (U.V.) light to form protein-DNA crosslinked complexes. Two independent methods of analysis, polyacrylamide gel electrophoresis in SDS and chloroform extraction indicated the formation of a stable complex between the enzyme and DNA. The complexes were formed under different ionic strength conditions, at low enzyme to DNA ratios in order to approach the conditions of specific binding. In contrast there was no crosslinking of the complex in 1 M KCl solution which dissociates the enzyme from DNA. The efficiency of formation of strongly bound complex was found to be much higher with holoenzyme than with core enzyme. The following results were obtained : 1) The large subunits beta and beta' were found to be bound to DNA. 2) Relatively small amount of sigma subunit were bound to DNA while alpha subunits were essentially not attached to DNA. The high binding affinity of beta and beta' subunits was also observed in the studies of isolated subunits. These results lead to a model of enzyme-DNA complex in which the large beta and beta' subunits provide the contacts between the RNA polymerase and the DNA.  相似文献   

8.
9.
10.
Complexes between Bacillus subtilus RNA polymerase and 32P-labeled DNA were irradiated with UV light and digested with nuclease; electrophoresis and autoradiography were used to identify the polymerase subunits cross-linked to DNA. These experiments showed: 1) that cross-linkage of promoter complexes yielded predominantly the beta and sigma subunits; 2) that beta, beta', and sigma were detected in non-promoter complexes; 3) that addition of the delta subunit or high concentrations of NaCl decreased cross-linkage of all subunits, especially the cross-linkage of the sigma subunit in non-promoter complexes and the binding of polymerase at DNA ends; 4) that different patterns of cross-linkage were obtained at 0 degrees C (conditions favoring the formation of closed complexes) and 37 degrees C (conditions favoring the formation of open complexes); and 5) predominantly beta and possibly alpha were cross-linked by irradiation of core-DNA complexes whereas similar experiments with core-delta complexed to DNA showed the efficient cross-linkage of beta' and beta.  相似文献   

11.
This study examines the characteristics of binding of berberine to the human telomeric d[AG(3)(T(2)AG(3))(3)] quadruplex. By employing UV-visible spectroscopy, fluorescence spectroscopy and isothermal titration calorimetry, we found that the binding affinity of berberine to the human telomeric quadruplex is 10(6). The complete thermodynamic profile for berberine binding to the quadruplex, at 25 degrees C, shows a small negative enthalpy (DeltaH) of -1.7 kcal.mol(-1), an entropy change with TDeltaS of +6.5 kcal.mol(-1), and an overall favorable free energy (DeltaG) of -8.2 kcal.mol(-1) .Through the temperature dependence of DeltaH, we obtained a heat capacity (DeltaC(p)) of -94 (+/- 5) cal.mol(-1).K(-1). The osmotic stress method revealed that there is an uptake of 13 water molecules in the complex relative to the free reactants. Furthermore, the molecular modeling studies on different quadruplex-berberine complexes show that berberine stacking at the external G-quartet is mainly aided by the pi-pi interaction and the stabilization of the high negative charge density of O6 of guanines by the positively charged N7 of berberine. The theoretical heat capacity (DeltaC(p)) values for quadruplex-berberine models are -89 and -156 cal.mol(-1).K(-1).  相似文献   

12.
M I Moraitis  H Xu  K S Matthews 《Biochemistry》2001,40(27):8109-8117
Purine repressor (PurR) binding to specific DNA is enhanced by complexing with purines, whereas lactose repressor (LacI) binding is diminished by interaction with inducer sugars despite 30% identity in their protein sequences and highly homologous tertiary structures. Nonetheless, in switching from low- to high-affinity DNA binding, these proteins undergo a similar structural change in which the hinge region connecting the DNA and effector binding domains folds into an alpha-helix and contacts the DNA minor groove. The differences in response to effector for these proteins should be manifest in the polyelectrolyte effect which arises from cations displaced from DNA by interaction with positively charged side chains on a protein and is quantitated by measurement of DNA binding affinity as a function of ion concentration. Consistent with structural data for these proteins, high-affinity operator DNA binding by the PurR-purine complex involved approximately 15 ion pairs, a value significantly greater than that for the corresponding state of LacI (approximately 6 ion pairs). For both proteins, however, conversion to the low-affinity state results in a decrease of approximately 2-fold in the number of cations released per dimeric DNA binding site. Heat capacity changes (DeltaC(p)) that accompany DNA binding, derived from buried apolar surface area, coupled folding, and restriction of motional freedom of polar groups in the interface, also reflect the differences between these homologous repressor proteins. DNA binding of the PurR-guanine complex is accompanied by a DeltaC(p) (-2.8 kcal mol(-1) K(-1)) more negative than that observed previously for LacI (-0.9 to -1.5 kcal mol(-1) K(-1)), suggesting that more extensive protein folding and/or enhanced structural rigidity may occur upon DNA binding for PurR compared to DNA binding for LacI. The differences between these proteins illustrate plasticity of function despite high-level sequence and structural homology and undermine efforts to predict protein behavior on the basis of such similarities.  相似文献   

13.
The kinetics of formation and of dissociation of open complexes (RPo) between Escherichia coli RNA polymerase (R) and the lambda PR promoter (P) have been studied as a function of temperature in the physiological range using the nitrocellulose filter binding assay. The kinetic data provide further evidence for the mechanism R + P in equilibrium I1 in equilibrium I2 in equilibrium RPo, where I1 and I2 are kinetically distinguishable intermediate complexes at this promoter which do not accumulate under the reaction conditions investigated. The overall second-order association rate constant (ka) increases dramatically with increasing temperature, yielding a temperature-dependent activation energy in the range 20 kcal (near 37 degrees C) to 40 kcal (near 13 degrees C) (1 kcal = 4.184 kJ). Both isomerization steps (I1----I2 and I2----RPo) appear to be highly temperature dependent. Except at low temperatures (less than 13 degrees C) the step I1----I2, which we attribute to a conformational change in the polymerase with a large negative delta Cp degrees value, is rate-limiting at the reactant concentrations investigated and hence makes the dominant contribution to the apparent activation energy of the pseudo first-order association reaction. The subsequent step I2----RPo, which we attribute to DNA melting, has a higher activation energy (in excess of 100 kcal) but only becomes rate-limiting at low temperature (less than 13 degrees C). The initial binding step R + P in equilibrium I1 appears to be in equilibrium on the time-scale of the isomerization reactions under all conditions investigated; the equilibrium constant for this step is not a strong function of temperature and is approximately 10(7) M-1 under the standard ionic conditions of the assay (40 mM-Tris . HCl (pH 8.0), 10 mM-MgCl2, 0.12 M-KC1). The activation energy of the dissociation reaction becomes increasingly negative at low temperatures, ranging from approximately -9 kcal near 37 degrees C to -30 kcal near 13 degrees C. Thermodynamic (van't Hoff) enthalpies delta H degrees of open complex formation consequently are large and temperature-dependent, increasing from approximately 29 to 70 kcal as the temperature is reduced from 37 to 13 degrees C. The corresponding delta Cp degrees value is approximately -2.4 kcal/deg. We propose that this large negative delta Cp degrees value arises primarily from the burial of hydrophobic surface in the conformational change (I1 in equilibrium I2) in RNA polymerase in the key second step of the mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
Bachhawat K  Kapoor M  Dam TK  Surolia A 《Biochemistry》2001,40(24):7291-7300
Allium sativum agglutinin (ASAI) is a heterodimeric mannose-specific bulb lectin possessing two polypeptide chains of molecular mass 11.5 and 12.5 kDa. The thermal unfolding of ASAI, characterized by differential scanning calorimetry and circular dichroism, shows it to be highly reversible and can be defined as a two-state process in which the folded dimer is converted directly to the unfolded monomers (A2 if 2U). Its conformational stability has been determined as a function of temperature, GdnCl concentration, and pH using a combination of thermal and isothermal GdnCl-induced unfolding monitored by DSC, far-UV CD, and fluorescence, respectively. Analyses of these data yielded the heat capacity change upon unfolding (DeltaC(p) and also the temperature dependence of the thermodynamic parameters, namely, DeltaG, DeltaH, and DeltaS. The fit of the stability curve to the modified Gibbs-Helmholtz equation provides an estimate of the thermodynamic parameters DeltaH(g), DeltaS(g), and DeltaC(p) as 174.1 kcal x mol(-1), 0.512 kcal x mol(-1) x K(-1), and 3.41 kcal x mol(-1) x K(-1), respectively, at T(g) = 339.4 K. Also, the free energy of unfolding, DeltaG(s), at its temperature of maximum stability (T(s) = 293 K) is 13.13 kcal x mol(-1). Unlike most oligomeric proteins studied so far, the lectin shows excellent agreement between the experimentally determined DeltaC(p) (3.2 +/- 0.28 kcal x mol(-1) x K(-1)) and those evaluated from a calculation of its accessible surface area. This in turn suggests that the protein attains a completely unfolded state irrespective of the method of denaturation. The absence of any folding intermediates suggests the quaternary interactions to be the major contributor to the conformational stability of the protein, which correlates well with its X-ray structure. The small DeltaC(p) for the unfolding of ASAI reflects a relatively small, buried hydrophobic core in the folded dimeric protein.  相似文献   

16.
17.
The effects of the enantiomers of (+/-)-CAMP and (+/-)-TAMP [(+/-)-cis- and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acids, respectively], which are cyclopropane analogues of GABA, were tested on GABA(A) and GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage clamp methods. (+)-CAMP was found to be a potent and full agonist at homooligomeric GABA(C) receptors (K:(D) approximately 40 microM: and I:(max) approximately 100% at rho(1); K:(D) approximately 17 microM: and I:(max) approximately 100% at rho(2)) but a very weak antagonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors. In contrast, (-)-CAMP was a very weak antagonist at both alpha(1)beta(2)gamma(2L) GABA(A) receptors and homooligomeric GABA(C) receptors (IC(50) approximately 900 microM: at rho(1) and approximately 400 microM: at rho(2)). Furthermore, (+)-CAMP appears to be a superior agonist to the widely used GABA(C) receptor partial agonist cis-4-aminocrotonic acid (K:(D) approximately 74 microM: and I:(max) approximately 78% at rho(1); K:(D) approximately 70 microM: and I:(max) approximately 82% at rho(2)). (-)-TAMP was the most potent of the cyclopropane analogues on GABA(C) receptors (K:(D) approximately 9 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 3 microM: and I:(max) approximately 50-60% at rho(2)), but it was also a moderately potent GABA(A) receptor partial agonist (K:(D) approximately 50-60 microM: and I:(max) approximately 50% at alpha(1)beta(2)gamma(2L) GABA(A) receptors). (+)-TAMP was a less potent partial agonist at GABA(C) receptors (K:(D) approximately 60 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 30 microM: and I:(max) approximately 60% at rho(2)) and a weak partial agonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors (K:(D) approximately 500 micro: and I:(max) approximately 50%). None of the isomers of (+/-)-CAMP and (+/-)-TAMP displayed any interaction with GABA transport at the concentrations tested. Molecular modeling based on the present results provided new insights into the chiral preferences for either agonism or antagonism at GABA(C) receptors.  相似文献   

18.
Krivoshein AV  Hess GP 《Biochemistry》2006,45(38):11632-11641
A mechanism for the alleviation of the malfunction of a mutated (gamma2(K289M)) epilepsy-linked gamma-aminobutyric acid (GABA) neurotransmitter receptor by phenobarbital is presented. Compared to the wild-type receptor, the GABA-induced current is considerably reduced in the mutated (alpha1beta2gamma2(K289M)) epilepsy-linked GABA(A) receptor [Baulac, S., Huberfeld, G., Gurfinkel-An, I., Mitropoulou, G., Beranger, A., Prud'homme, J. F., Baulac, M., Brice, A., Bruzzone, R., and LeGuer, E. (2001) Nat. Genet. 28, 46-48]. This is due to an impaired GABA-induced equilibrium between the closed- and open-channel forms of the receptor [Ramakrishnan, L., and Hess, G. P. (2004) Biochemistry 43, 7534-7540]. We report that a barbiturate anticonvulsant, phenobarbital, alleviates the effect of this mutation. Transient kinetic techniques with a millisecond-to-microsecond time resolution and the wild-type and mutated receptors recombinantly expressed in mammalian HEK293T cells were used. The efficacy of phenobarbital in potentiating currents elicited by a saturating concentration of GABA is about 3 times higher for the mutated receptor than for the wild type. The results indicate that phenobarbital alleviates the malfunction of the mutated receptor by increasing its channel-opening equilibrium constant (phi(-1) = k(op)/k(cl)) by about an order of magnitude. Phenobarbital changes the channel-opening rate constant (k(op)) by less than 2-fold but decreases the channel-closing rate constant (k(cl)) 8-fold. The dissociation constant of GABA is unaffected. The experiments also indicate that at saturating concentrations of GABA the mutated (gamma2(K289M)) form of the alpha1beta2gamma2 GABA(A) receptor is well suited for a rapid and simple screening of positive allosteric modulators of the receptor.  相似文献   

19.
20.
Ren J  Jenkins TC  Chaires JB 《Biochemistry》2000,39(29):8439-8447
Isothermal titration calorimetry has been used to determine the binding enthalpy and heat capacity change (DeltaC(p)()) for a series of DNA intercalators, including ethidium, propidium, daunorubicin, and adriamycin. Temperature-dependent binding enthalpies were measured directly for the ligands, from which DeltaC(p)() values of -140 to -160 cal mol(-)(1) K(-)(1) were calculated. Published van't Hoff plots were reanalyzed to obtain DeltaC(p)() values of -337 to -423 cal mol(-)(1) K(-)(1) for the binding of actinomycin D to several DNA oligonucleotide duplexes with defined sequences. Heat capacity changes for DNA intercalation were found to correlate with the alterations in solvent-accessible surface area calculated from available high-resolution structural data. Multiple linear regression was used to derive the relationship DeltaC(p)() = 0. 382(+/-0.026)DeltaA(np) - 0.121(+/-0.077)DeltaA(p) cal mol(-)(1) K(-)(1), where DeltaA(np) and DeltaA(p) are the binding-induced changes in nonpolar and polar solvent-accessible surface areas (in square angstroms), respectively. The DeltaC(p)() terms were used to estimate the hydrophobic contribution to intercalative binding free energies, yielding values that ranged from -11.2 (ethidium) to -30 kcal mol(-)(1) (actinomycin D). An attempt was made to parse the observed binding free energies of ethidium and propidium into five underlying contributions. Such analysis showed that the DNA binding behavior of these simple intercalators is driven almost equally by hydrophobic effects and van der Waals contacts within the intercalation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号