首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tpp1 is a DNA 3'-phosphatase in Saccharomyces cerevisiae that is believed to act during strand break repair. It is homologous to one domain of mammalian polynucleotide kinase/3'-phosphatase. Unlike in yeast, we found that Tpp1 could confer resistance to methylmethane sulfonate when expressed in bacteria that lack abasic endonuclease/3'-phosphodiesterase function. This species difference was due to the absence of delta-lyase activity in S. cerevisiae, since expression of bacterial Fpg conferred Tpp1-dependent resistance to methylmethane sulfonate in yeast lacking the abasic endonucleases Apn1 and Apn2. In contrast, beta-only lyases increased methylmethane sulfonate sensitivity independently of Tpp1, which was explained by the inability of Tpp1 to cleave 3' alpha,beta-unsaturated aldehydes. In parallel experiments, mutations of TPP1 and RAD1, encoding part of the Rad1/Rad10 3'-flap endonuclease, caused synthetic growth defects in yeast strains lacking Apn1. In contrast, Fpg expression led to a partial rescue of apn1 apn2 rad1 synthetic lethality by converting lesions into Tpp1-cleavable 3'-phosphates. The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates. They further demonstrate a role for Tpp1 in repairing endogenously created 3'-phosphates. The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation.  相似文献   

2.
L F Povirk  Y H Han  R J Steighner 《Biochemistry》1989,28(14):5808-5814
In order to examine the structure of bleomycin-induced DNA double-strand breaks, defined-sequence DNA was labeled in each strand at a single restriction site and treated with bleomycin. Various double-stranded fragments resulting from bleomycin-induced double-strand breaks were isolated, denatured, and run on sequencing gels to determine the sites of cleavage in each strand. For virtually every double-strand break, the cleavage site in one strand was a pyrimidine in a G-Py sequence, reflecting a specificity similar to that of bleomycin-induced single-strand cleavage. However, the cleavage site in the complementary strand was seldom a G-Py sequence, and was usually a site where single-strand cleavage was infrequent. When the sequence at the double-strand break was G-Py-Py', the break at Py was usually accompanied by a break at the base directly opposite Py, resulting in blunt ends. When the sequence was G-Py-Pu, the break at Py was usually accompanied by a break at the base opposite Pu, resulting in single-base 5' extensions. Double-strand breaks with 3' extensions, such as would result from cleavage of two C residues in a self-complementary G-C sequence, were conspicuously absent. These data provide further evidence that bleomycin-induced double-strand breaks do not result from coincidence of independent site-specific single-strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.  相似文献   

4.
Ionizing radiation, oxidative stress and endogenous DNA-damage processing can result in a variety of single-strand breaks with modified 5' and/or 3' ends. These are thought to be one of the most persistent forms of DNA damage and may threaten cell survival. This study addresses the mechanism involved in recognition and processing of DNA strand breaks containing modified 3' ends. Using a DNA-protein cross-linking assay, we followed the proteins involved in the repair of oligonucleotide duplexes containing strand breaks with a phosphate or phosphoglycolate group at the 3' end. We found that, in human whole cell extracts, end-damage-specific proteins (apurinic/apyrimidinic endonuclease 1 and polynucleotide kinase in the case of 3' ends containing phosphoglycolate and phosphate, respectively) which recognize and process 3'-end-modified DNA strand breaks are required for efficient recruitment of X-ray cross-complementing protein 1-DNA ligase IIIalpha heterodimer to the sites of DNA repair.  相似文献   

5.
Defined DNA substrates containing discrete abasic sites or paired abasic sites set 1, 3, 5 and 7 bases apart on opposite strands were constructed to examine the reactivity of S1, mung bean and P1 nucleases towards abasic sites. None of the enzymes acted on the substrate containing discrete abasic sites. Under conditions where little or no non-specific DNA degradation was observed, all three nucleases were able to generate double-strand breaks when the bistranded abasic sites were 1 and 3 base pairs apart. However, when the abasic sites were further apart, the enzymes again failed to cleave the DNA. These results indicate that single abasic sites do not cause sufficient denaturation of the DNA to allow incision by these single-strand specific endonucleases. The reactivity of these enzymes was also investigated on DNA substrates that were nicked by DNasel or more site-specifically by endonuclease III incision at the discrete abasic sites. The three nucleases readily induced a strand break opposite such nicks.  相似文献   

6.
The inactivation efficiency and repair of single-strand breaks was investigated using model strand breaks created by endonucleolytic incision of damaged DNA. Phi X-174 duplex transfecting DNA containing either thymine glycols, urea residues, or abasic (AP) sites was incubated with AP endonucleases that produce breaks on the 3' side, the 5' side, or both sides of the lesion. For each lesion, incubation with Escherichia coli endonuclease III results in a single-strand break containing a 3' alpha, beta-unsaturated aldehyde (4-hydroxy-2-pentenal), while treatment of AP- or urea-containing DNA with E. coli endonuclease IV results in a single-strand break containing a 5' deoxyribose or a 5' deoxyribosylurea moiety, respectively. Incubation of lesion-containing DNA with both enzymes results in a base gap. Ligatable nicks containing 3' hydroxyl and 5' phosphate moieties were produced by subjecting undamaged DNA to DNase I. When the biological activity of these DNAs was assessed in wild-type cells, ligatable nicks were not lethal, but each of the other strand breaks tested was lethal, having inactivation efficiencies between 0.12 and 0.14. These inactivation efficiencies are similar to those of the base lesions from which the strand breaks were derived. In keeping with the current model of base excision repair, when phi X duplex DNA containing strand breaks with a blocked 3' terminus was transfected into an E. coli double mutant lacking the major 5' cellular AP endonucleases, a greater than twofold decrease in survival was observed. Moreover, when this DNA was treated with a 5' AP endonuclease prior to transfection, the survival returned to that of wild type. As expected, when DNA containing strand breaks with a 5' blocked terminus or DNA containing base gaps was transfected into the double mutant lacking 5' AP endonucleases, the survival was the same as in wild-type cells. The decreased survival of transfecting DNA containing thymine glycols, urea, or AP sites observed in appropriate base excision repair-defective mutants was also obviated if the DNA was incubated with the homologous enzyme prior to transfection. Thus, in every case, with both base lesions and single-strand breaks, the lesion was repaired in the cell by the enzyme that recognizes it in vitro. Furthermore, the repair step in the cell could be eliminated if the appropriate enzyme was added in vitro prior to transfection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.  相似文献   

8.
S1-sensitive sites in DNA after gamma-irradiation   总被引:2,自引:0,他引:2  
DNA from gamma-irradiated T1 bacteriophages was analyzed for "single-stranded" sites by cleavage with S1 nuclease from Aspergillus oryzae as lesion probe. The ratio of "S1-sensitive sites" to the amount of radiation-induced single-strand breaks was about one. Presumably these "denatured" sites were associated with single-strand breaks. The subsequent check for the persistence of "single-stranded" sites within the DNA molecule by thermokinetics demonstrated a strong affinity of the nuclease to its substrate, the single-stranded lesion, and a perfect excision. It is assumed that the direct absorption of radiation energy in the DNA gives rise to the formation of such bulky lesions.  相似文献   

9.
In Saccharomyces cerevisiae, the AP endonucleases encoded by the APN1 and APN2 genes provide alternate pathways for the removal of abasic sites. Oxidative DNA-damaging agents, such as H(2)O(2), produce DNA strand breaks which contain 3'-phosphate or 3'-phosphoglycolate termini. Such 3' termini are inhibitory to synthesis by DNA polymerases. Here, we show that purified yeast Apn2 protein contains 3'-phosphodiesterase and 3'-->5' exonuclease activities, and mutation of the active-site residue Glu59 to Ala in Apn2 inactivates both these activities. Consistent with these biochemical observations, genetic studies indicate the involvement of APN2 in the repair of H(2)O(2)-induced DNA damage in a pathway alternate to APN1, and the Ala59 mutation inactivates this function of Apn2. From these results, we conclude that the ability of Apn2 to remove 3'-end groups from DNA is paramount for the repair of strand breaks arising from the reaction of DNA with reactive oxygen species.  相似文献   

10.
An essential step in the repair of free radical-mediated DNA strand breaks is the removal of sugar fragments such as phosphoglycolate from the 3' termini. While the abasic endonuclease Ape1 can remove phosphoglycolate from single-strand breaks in double-stranded DNA, an enzyme capable of removing it from 3' overhangs of double-strand breaks has yet to be identified. We therefore tested DNase III, the predominant 3' --> 5' exonuclease in mammalian cell extracts, for possible 3'-phosphoglycolate-removing activity. However, all 3'-phosphoglycolate substrates, as well as a 3'-phosphate substrate, were resistant to DNase III under conditions in which the analogous 3'-hydroxyl substrates were extensively degraded. The DNA end-binding protein Ku (an equimolar mixture of Ku70, now known as G22P1, and Ku86, now known as XRCC5) did not alter the resistance of the 3'-phosphoglycolate substrates, but the protein modulated the susceptibility of 3'-hydroxyl substrates, allowing DNase III to remove a 3' overhang but inhibiting digestion of the double-stranded portion of the substrate.  相似文献   

11.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

12.
Paull TT 《DNA Repair》2010,9(12):1283-1291
Double-strand breaks in chromosomal DNA are repaired efficiently in eukaryotic cells through pathways that involve direct religation of broken ends, or through pathways that utilize an unbroken, homologous DNA molecule as a template for replication. Pathways of repair that require homology initiate with the resection of the 5' strand at the break site, to uncover the 3' single-stranded DNA that becomes a critical intermediate in single-strand annealing and in homologous strand exchange. Resection of the 5' strand is regulated to occur most efficiently in S and G(2) phases of the cell cycle when sister chromatids are present as recombination templates. The mechanisms governing resection in eukaryotes have been elusive for many years, but recent work has identified the major players in short-range processing of DNA ends as well as the extensive resection of breaks that has been observed in vivo. This review focuses on the Mre11/Rad50/Xrs2(Nbs1) complex and the Sae2(CtIP) protein and their roles in initiating both short-range and long-range resection, the effects of topoisomerase-DNA conjugates on resection in vivo, and the relationship between these factors and NHEJ proteins in regulating 5' strand resection in eukaryotic cells.  相似文献   

13.
Adenovirus type 2 or lambda DNA was digested with the pH 4.0 endonuclease, purified from adenovirus 2-infected KB cells. The enzyme produces a limit digest of approximate size in the range of 140-210 base pairs long. The termini of the DNA fragments generated by the endonuclease digestion had 3'-P and 5'-OH groups. The 3' and 5' end groups of the products were analyzed. Our data indicate that 3' end group was a purine (68-76%), dA occuring about twice the frequency of dG. The 5' end group was either dG or dC with equal frequency. Data obtained by treatment of the 5' labeled endonuclease product of lambda DNA with single-strand specific S1 nuclease from Asperigillus oryzae or exonuclease VII from Escherichia coli indicated that the majority of the products had a short 5' protruding ends. The mode of cleavage of this endonuclease seems to be through initial formation of several single-strand breaks with some base specificity. If these breaks are at close proximity on opposite strands, double-stranded fragments with protruding ends are generated.  相似文献   

14.
A number of endogenous and exogenous agents, and cellular processes create abasic (AP) sites in DNA. If unrepaired, AP sites cause mutations, strand breaks and cell death. Aldehyde-reactive agent methoxyamine reacts with AP sites and blocks their repair. Another alkoxyamine, ARP, tags AP sites with a biotin and is used to quantify these sites. We have combined both these abilities into one alkoxyamine, AA3, which reacts with AP sites with a better pH profile and reactivity than ARP. Additionally, AA3 contains an alkyne functionality for bioorthogonal click chemistry that can be used to link a wide variety of biochemical tags to AP sites. We used click chemistry to tag AP sites with biotin and a fluorescent molecule without the use of proteins or enzymes. AA3 has a better reactivity profile than ARP and gives much higher product yields at physiological pH than ARP. It is simpler to use than ARP and its use results in lower background and greater sensitivity for AP site detection. We also show that AA3 inhibits the first enzyme in the repair of abasic sites, APE-1, to about the same extent as methoxyamine. Furthermore, AA3 enhances the ability of an alkylating agent, methylmethane sulfonate, to kill human cells and is more effective in such combination chemotherapy than methoxyamine.  相似文献   

15.
L S Kappen  C Q Chen  I H Goldberg 《Biochemistry》1988,27(12):4331-4340
Neocarzinostatin chromophore produces alkali-labile, abasic sites at cytidylate residues in AGC sequences in oligonucleotides in their duplex form. Glutathione is the preferred thiol activator of the drug in the formation of these lesions. The phosphodiester linkages on each side of the abasic site are intact, but when treated with alkali, breaks are formed with phosphate moieties at each end. Similar properties are exhibited by the abasic lesions produced at the purine residue to which the C in AGC is base-paired on the complementary strand. The abasic sites at C residues differ from those produced by acid-induced depurination in the much greater lability of the phosphodiester linkages on both sides of the deoxyribose, in the inability of NaBH4 to prevent alkali-induced cleavage, and in the relative resistance to apurinic/apyrimidinic endonucleases. The importance of DNA microstructure in determining attack site specificity in abasic site formation at C residues is shown not only by the requirement for the sequence AGC but also by the findings that substitution of G by I 5' to the C decreases the attack at C, whereas placement of an I opposite the C markedly enhances the reaction. Quantitation of the abstraction of 3H into the drug from C residues in AGC specifically labeled in the deoxyribose at C-5' or C-1',2' suggests that, in contrast to the attack at C-5' in the induction of direct strand breaks at T residues, abasic site formation at C residues may involve attack at C-1'. Each type of lesion may exist on the complementary strands of the same DNA molecule, forming a double-stranded lesion.  相似文献   

16.
Clustered DNA damages are defined as two or more closely located DNA damage lesions that may be present within a few helical turns of the DNA double strand. These damages are potential signatures of ionizing radiation and are often found to be repair resistant. Types of damaged lesions frequently found inside clustered DNA damage sites include oxidized bases, abasic sites, nucleotide dimers, strand breaks or their complex combinations. In this study, we used a bistranded two-lesion abasic cluster DNA damage model to access the repair process of DNA in condensate form.Oligomer DNA duplexes (47 bp) were designed to have two deoxyuridine in the middle of the sequences, three bases apart in opposite strands. The deoxyuridine residues were converted into abasic sites by treatment with UDG enzyme creating an abasic clustered damage site in a precise position in each of the single strand of the DNA duplex. This oligomer duplex having compatible cohesive ends was ligated to pUC19 plasmid, linearized with HindIII restriction endonuclease. The plasmid–oligomer conjugate was transformed into condensates by treating them with spermidine. The efficiency of strand cleavage action of ApeI enzyme on the abasic sites was determined by denaturing PAGE after timed incubation of the oligomer duplex and the oligomer–plasmid conjugate in presence and absence of spermidine. The efficiency of double strand breaks was determined similarly by native PAGE. Quantitative gel analysis revealed that rate of abasic site cleavage is reduced in the DNA condensates as compared to the oligomer DNA duplex or the linear ligated oligomer–plasmid conjugates. Generation of double strand break is significantly reduced also, suggesting that their creation is not proportionate to the number of abasic sites cleaved in the condensate model. All these suggest that the ApeI enzyme have difficulty to access the abasic sites located deep into the condensates leading to repair refractivity of the damages. In addition, we found that presence of a polyamine such as spermidine has no notable effect in the incision activity of ApeI enzyme in linear oligomer DNA duplexes in our experimental concentration.  相似文献   

17.
The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was determined with high precision in purified plasmid DNA using an improved technique. This improved technique involved the labelling of the 5′- and 3′-ends of DNA with different fluorescent tags, followed by simultaneous cleavage by bleomycin and capillary electrophoresis with laser-induced fluorescence. This permitted the determination of bleomycin cleavage specificity with high accuracy since end-label bias was greatly reduced. Bleomycin produces single- and double-strand breaks, abasic sites and other base damage in DNA. This high-precision method was utilised to elucidate, for the first time, the DNA sequence specificity of bleomycin-induced DNA damage at abasic sites. This was accomplished using endonuclease IV that cleaves DNA at abasic sites after bleomycin damage. It was found that bleomycin-induced abasic sites formed at 5′-GC and 5′-GT sites while bleomycin-induced phosphodiester strand breaks formed mainly at 5′-GT dinucleotides. Since bleomycin-induced abasic sites are produced in the absence of molecular oxygen, this difference in DNA sequence specificity could be important in hypoxic tumour cells.  相似文献   

18.
The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double strand breaks. To assess the possibility that Artemis acts on oxidatively modified double strand break termini, its activity toward model DNA substrates, bearing either 3'-hydroxyl or 3'-phosphoglycolate moieties, was examined. A 3'-phosphoglycolate had little effect on Artemis-mediated trimming of long 3' overhangs (> or =9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3'-phosphoglycolates on overhangs of 4-5 bases promoted Artemis-mediated removal of a single 3'-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3' overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was completely dependent on DNA-dependent protein kinase and ATP and was largely dependent on Ku, which markedly stimulated Artemis activity toward all 3' overhangs. Together, these data suggest that efficient Artemis-mediated cleavage of 3' overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3' to the cleavage site, as well as 2 unpaired nucleotides 5' to the cleavage site. Shorter 3'-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis but much more slowly. Consistent with a role for Artemis in repair of terminally blocked double strand breaks in vivo, human cells lacking Artemis exhibited hypersensitivity to x-rays, bleomycin, and neocarzinostatin, which all induce 3'-phosphoglycolate-terminated double strand breaks.  相似文献   

19.
Camptothecin (CPT) is a specific topoisomerase I (top1) poison which traps top1 cleavable complexes; e.g. top1-linked DNA single-strand breaks with 5'-hydroxyl and 3'-top1 linked termini. CPT is also a potent anticancer agent and several of its derivatives have recently shown activity in the chemotherapy of solid tumors. Our aim was to apply the ligation-mediated polymerase chain reaction (LM-PCR) method to DNA extracted from CPT-treated cells in order to: (i) evaluate LM-PCR as a sensitive technique to detect in vivo CPT-induced cleavable complexes; (ii) investigate the frequency and distribution of CPT-induced DNA damage in vivo ; and (iii) compare the distribution and intensity of cleavage sites in vivo and in vitro. This report describes a protocol allowing the sequencing of top1-mediated DNA strand breaks induced by CPT in the coding strand of the 18S rRNA gene of human colon carcinoma cells. CPT or its clinical derivatives, topotecan, CPT-11, SN-38, and 9-aminocamptothecin differed in their potency and exhibited differences in their DNA cleavage pattern, which is consistent with our previous in vitro studies [Tanizawa et al . (1995) Biochemistry , 43, 7200-7206]. CPT-induced DNA cleavages induced in the presence of purified top1 were induced at the same sites in the human 18S rDNA. However, the relative intensity of the cleavages were different in vivo and in vitro. Because mammalian cells contain approximately 300 copies of the rDNA gene per genome, rDNA could be used to monitor CPT-induced DNA cleavage in different cell lines and possibly in tumor samples.  相似文献   

20.
Ionizing radiation and radiomimetic anticancer agents induce clustered DNA damage, which are thought to reflect the biological severity. Escherichia coli Nth and Fpg and nuclear extracts from XRS5, a Chinese hamster ovary Ku-deficient cell line, have been used to study the influence on their substrate recognition by the presence of a neighboring damage or an abasic site on the opposite strand, as models of clustered DNA damage. These proteins were tested for their efficiency to induce a single-strand break on a (32)P-labeled oligonucleotide containing either an abasic (AP) site, dihydrothymine (DHT), 7,8-dihydro-8-oxo-2'deoxyguanine, or 7, 8-dihydro-8-oxo-2'deoxyadenine at positions 1, 3, or 5 base pairs 5' or 3' to either an AP site or DHT on the labeled strand. DHT excision is much more affected than cleavage of an AP site by the presence of other damage. The effect on DHT excision is greatest with a neighboring AP site, with the effect being asymmetric with Nth and Fpg. Therefore, this large inhibition of the excision of DHT by the presence of an opposite AP site may minimize the formation of double-strand breaks in the processing of DNA clustered damages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号