首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oil bodies in seeds of higher plants are surrounded with oleosins. Here we demonstrate a novel role for oleosins in protecting oilseeds against freeze/thaw-induced damage of their cells. We detected four oleosins in oil bodies isolated from seeds of Arabidopsis thaliana , and designated them OLE1, OLE2, OLE3 and OLE4 in decreasing order of abundance in the seeds. For reverse genetics, we isolated oleosin-deficient mutants ( ole1 , ole2 , ole3 and ole4 ) and generated three double mutants ( ole1 ole2 , ole1 ole3 and ole2 ole3 ). Electron microscopy showed an inverse relationship between oil body sizes and total oleosin levels. The double mutant ole1 ole2 , which had the lowest levels of oleosins, had irregular enlarged oil-containing structures throughout the seed cells. Germination rates were positively associated with oleosin levels, suggesting that defects in germination are related to the expansion of oil bodies due to oleosin deficiency. We found that freezing followed by imbibition at 4°C abolished seed germination of single mutants ( ole1 , ole2 and ole3 ), which germinated normally without freezing treatment. The treatment accelerated the fusion of oil bodies and the abnormal-positioning and deformation of nuclei in ole1 seeds, which caused seed mortality. In contrast, ole1 seeds that had undergone freezing treatment germinated normally when incubated at 22°C instead of 4°C, because degradation of oils abolished the acceleration of fusion of oil bodies during imbibition. Taken together, our findings suggest that oleosins increase the viability of over-wintering oilseeds by preventing abnormal fusion of oil bodies during imbibition in the spring.  相似文献   

3.
Yeast cells almost completely deficient in all cytochromes were obtained by introducing two defective nuclear genes, cyd1 and cyc4, into the same haploid strain. The action of the two mutant genes is synergistic, since either gene acting singly results in only partial cytochrome deficiency. Normal synthesis of all cytochromes can be restored in the double mutant by adding delta-aminolevulinic acid to the growth medium. The optimum concentration of delta-aminolevulinate for restoration of cytochrome synthesis is about 40 muM; when higher concentrations are used, synthesis of cytochromes is partially suppressed, particularly that of cytochrome a.a3. Growth yield of the double mutant is stimulated by ergosterol and Tween 80, a source of unsaturated fatty acid. Methionine stimulates further. None of these nutrients is required for growth when sufficient delta-aminolevulinic acid is present in the growth medium. With respect to nutritional responses, the single-gene, cytochrome-deficient mutant, ole3, behaves like the double mutant. The frequency of the p-mutation in the double mutant grown in the absence of ergosterol, Tween 80, and delta-aminolevulinic acid is at least 15%. The frequency can be reduced to less than 1% by either delta-aminolevulinic acid or Tween 80. Ergosterol alone does not decrease the p- frequency. The ole3 mutant does not exhibit increased p-frequency under similar conditions of unsaturated fatty acid deficiency.  相似文献   

4.
5.
Expression of OLE16 and OLE18, two oleosin isoforms in oil bodies of rice seeds, was suppressed by RNA interference. Electron microscopy revealed a few large, irregular oil clusters in 35S::ole16i transgenic seed cells, whereas accumulated oil bodies in 35S::ole18i transgenic seed cells were comparable to or slightly larger than those in wild-type seed cells. Large and irregular oil clusters were observed in cells of double mutant seeds. These unexpected differences observed in oil bodies of 35S::ole16i and 35S::ole18i transgenic seeds were further analyzed. In comparison to wild-type plants, OLE18 levels were reduced to approximately 40% when OLE16 was completely eliminated in 35S::ole16i transgenic plants. In contrast, OLE16 was reduced to only 80% of wild-type levels when OLE18 was completely eliminated in 35S::ole18i transgenic plants. While the triacylglycerol content of crude seed extracts of 35S::ole16i and 35S::ole18i transgenic seeds was reduced to approximately 60% and 80%, respectively, triacylglycerol in isolated oil bodies was respectively reduced to 45% and 80% in accordance with the reduction of their oleosin contents. Oil bodies isolated from both 35S::ole16i and 35S::ole18i transgenic seeds were found to be of comparable size and stability to those isolated from wild-type rice seeds, although they were merely sheltered by a single oleosin isoform. The drastic difference between the triacylglycerol contents of crude seed extracts and isolated oil bodies from 35S::ole16i transgenic plants could be attributed to the presence of large, unstable oil clusters that were sheltered by insufficient amounts of oleosin and therefore could not be isolated together with stable oil bodies.  相似文献   

6.
Interferon regulatory factor 3 (IRF3) is activated in response to various environmental stresses including viral infection and DNA-damaging agents. However, the biological function of IRF3 in cell growth is not well understood. We demonstrated that IRF3 markedly inhibited growth and colony formation of cells. IRF3 blocked DNA synthesis and induced apoptosis. Based on this negative control of cell growth by IRF3, we examined whether functional loss of IRF3 may contribute to oncogenic transformation. IRF3 activity was specifically inhibited by expression of its dominant negative mutant. This mutant lacks a portion of the DNA binding domain like IRF3a, an alternative splice form of IRF3 in the cells. This dominant negative inhibition blocked expression of specific IRF3 target genes. Mutant IRF3 efficiently transformed NIH3T3 cells, as demonstrated by anchorage-independent growth in soft agar and tumorigenicity in nude mice. These results imply that IRF3 may function as a tumor suppressor and suggest a possible role for the relative levels of IRF3 and its dominant negative mutant in tumorigenesis.  相似文献   

7.
The unsaturated fatty acid (ufa) requiring ole1 mutant of Saccharomyces cerevisiae appears to produce a defective delta-9 fatty acid desaturase. This enzyme catalyzes double bond formation between carbons 9 and 10 of palmitoyl and stearoyl coenzyme A. A DNA fragment isolated by complementation of an ole1 strain repairs the ufa requirement in mutant cells. Genetic analysis of the cloned DNA fragment indicates that it is allelic to the OLE1 gene. Disruption of a single copy of the wild type gene in a diploid strain produces both wild type and nonreverting ufa-requiring haploid progeny upon sporulation. Membrane lipids of the disrupted haploid strains contain only ufas supplied in the growth medium. The recovery of activity in both wild type and disrupted segregants was examined after removal of ufas from the growth medium. Following ufa deprivation disruptant cells grew normally for about three generations and then at a slower rate for at least 0.6 generations. During that time cellular ufas dropped from 63 to 7.3 mol % of the total fatty acids. No production of the 16:1 and 18:1 products of the desaturase was observed in disruptant cells, whereas desaturation in wild type control cells was evident 2 h after deprivation. These results indicate that 1) the OLE1 gene is essential for production of monounsaturated fatty acids and is probably the structural gene for the delta-9 desaturase enzyme. 2) A large part of membrane ufas present under normal culture conditions are not essential for growth and cell division.  相似文献   

8.
Mutants have been constructed by deleting regions of the gene rpsA for ribosomal protein S1, which had been cloned in plasmid pACYC184. The mutant genes were analyzed for their ability to complement an S1 amber mutant containing a temperature-sensitive suppressor. Another series of mutants was constructed using the tac promoter plasmid pKK223-3, and the effect of the mutant proteins was analyzed in a strain wild type for rpsA. The gene products of all mutants were identified by the immunoblotting technique. Plasmids with a mutant rpsA gene which do not or only poorly complement the S1 amber mutation cause drastic growth reduction, whereas the overall protein synthesis is affected to different extents depending on the site of the deletion. Mutants which express S1 fragments comprising at least the NH2-terminal 100 amino acids stimulate or inhibit the synthesis of certain cellular proteins. The amount of chromosomal coded S1 was reduced by each mutant plasmid. Our data suggest that S1 has a general regulatory role during protein biosynthesis.  相似文献   

9.
A large pool of antibiotic resistant and auxotrophic mutants was isolated from the Staphylococcus aureus phage group 2 strains UT0002-19 and UT0017 by (1) antibiotic gradient plates, (2) trimethoprim selection, and (3) nitrosoguanidine mutagenesis, which sometimes was coupled by enrichment with either penicillin or methicillin. Strain UT0002-19 has a chromosomal determinant for exfoliative toxin (ET), which causes "scalded skin syndrome" in man. A few mutants were isolated from the phage group 1 strain UT0080, which also produces ET. Two transformation regimens, called the broth and plate methods, were devised for the phage group 2 strains. They employed 80 alpha as helper phage, and recipient cells were incubated with transforming DNA in the presence of Ca2+. Strain UT0080 was transformed using phage 55 as helper. Maximum competence of the phage group 2 strains occurred during early logarithmic growth in trypticase soy broth, but cells grown overnight on heart infusion agar were also competent. Transformation frequencies of all markers ranged from 10(-6) to 10(-8). For phage 80 alpha, a multiplicity of infection of 4 was optimal in transforming a mutant of strain UT0002-19. Transformation of gly, lin, met, ole, rif, and ser markers in S. aureus is reported for the first time. Ery and ole markers in all three strains exhibited cross-resistance. Mapping studies, similar to those performed by DNA-mediated transformation in the phage group 3 strain 8325, can now be commenced for phage group 2 strains of S. aureus in order to elucidate the molecular genetics of this medically important bacterium.  相似文献   

10.
Vacuolar acidification has been proposed to play a key role in a number of cellular processes, including protein sorting, zymogen activation, and maintenance of intracellular pH. We investigated the significance of vacuolar acidification by cloning and mutagenizing the gene for the yeast vacuolar proton-translocating ATPase 60-kilodalton subunit (VAT2). Cells carrying a vat2 null allele were viable; however, these cells were severely defective for growth in medium buffered at neutral pH. Vacuoles isolated from cells bearing the vat2 null allele were completely devoid of vacuolar ATPase activity. The pH of the vacuolar lumen of cells bearing the vat2 mutation was 7.1, compared with the wild-type pH of 6.1, as determined by a flow cytometric pH assay. These results indicate that the vacuolar proton-translocating ATPase complex is essential for vacuolar acidification and that the low-pH state of the vacuole is crucial for normal growth. The vacuolar acidification-defective vat2 mutant exhibited normal zymogen activation but displayed a minor defect in vacuolar protein sorting.  相似文献   

11.
Mode of Cell Wall Growth of Bacillus megaterium   总被引:13,自引:11,他引:2  
The growth of the cell wall of Bacillus megaterium KM was examined by labeling the cell wall uniformly with (3)H-alpha, epsilon-diaminopimelic acid and examining by radioautography the distribution of labeled cell wall material in daughter cells. The results indicate that the label is distributed uniformly to all daughter cells and rule out a single growth point, either central or apical, for these cells. The results strongly suggest that cell wall growth occurs by uniform deposition of new wall over the whole cell surface.  相似文献   

12.
13.
Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.  相似文献   

14.
Chain initiation on many modular polyketide synthases is mediated by acyl transfer from the CoA ester of a dicarboxylic acid, followed by decarboxylation in situ by KSQ, a ketosynthase-like decarboxylase domain. Consistent with this, the acyltransferase (AT) domains of all KSQ-containing loading modules are shown here to contain a key arginine residue at their active site. Site-specific replacement of this arginine residue in the oleandomycin (ole) loading AT domain effectively abolished AT activity, consistent with its importance for catalysis. Substitution of the ole PKS loading module, or of the tylosin PKS loading module, for the erythromycin (ery) loading module gave polyketide products almost wholly either acetate derived or propionate derived, respectively, instead of the mixture found normally. An authentic extension module AT domain, rap AT2 from the rapamycin PKS, functioned appropriately when engineered in the place of the ole loading AT domain, and gave rise to substantial amounts of C13-methylerythromycins, as predicted. The role of direct acylation of the ketosynthase domain of ex-tension module 1 in chain initiation was confirmed by demonstrating that a mutant of the triketide synthase DEBS1-TE, in which the 4'-phosphopante-theine attachment site for starter acyl groups was specifically removed, produced triketide lactone pro-ducts in detectable amounts.  相似文献   

15.
Apoptosis and subsequent clearance of apoptotic cells are important for the prevention of diseases. Therefore, it is essential to understand the mechanisms underlying the biology of phagocytic clearance of apoptotic cells. The best characterized "eat me" signal on the surface of apoptotic cells is phosphatidylserine (PS). Recently, we demonstrated that annexin A5 mediates the internalization of PS-expressing membrane patches and down regulates surface expression of tissue factor. Here, we investigated the role of PS in the phagocytosis of apoptotic cells using annexin A5. Using a novel flow cytometric-based phagocytosis assay, we observed that engulfment was inhibited with 20% if annexin A5 was added to PS-expressing cells that had completed apoptosis. The inhibition increased to more than 50% if annexin A5 was added during the apoptotic process. This inhibition is specific for annexin A5, since the mutant M23 and annexin A1 did not further increase the inhibition of phagocytosis when added during the apoptotic process. Interestingly, cells with internalized annexin A5 still express PS at their surface. We conclude that other ligands within the PS-expressing membrane patch act together with PS as an "eat me" signal.  相似文献   

16.
Mutations in human spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia. Sequence analysis revealed that spastin contains the AAA (ATPases associated with diverse cellular activities) domain in the C-terminal region. Recently, it was reported that spastin interacts dynamically with microtubules and displays microtubule-severing activity. A plausible Caenorhabditis elegans homologue of spastin (SPAS-1) has been identified by homology search and phylogenetic analyses. To understand the function of the spastin homologue, we characterized the spas-1 deletion mutant and analyzed spas-1 expression regulation in C. elegans. SPAS-1 was localized with cytoskeletons at the perinuclear region. We found that microtubules were intensely stained at the centrosomal region in the deletion mutant. Furthermore, overexpression of SPAS-1 caused disassembly of microtubule network in cultured cells, while ATPase-deficient SPAS-1 did not. These results indicate that C. elegans SPAS-1 plays an important role in microtubule dynamics. We also found that two kinds of products were generated from spas-1 by alternative splicing in a developmental stage-dependent manner.  相似文献   

17.
18.
1. A Km mutant of Saccharomyces cerevisiae with a lesion in CDPdiacylglycerol-inositol 3-phosphatidyltransferase was isolated. The mutant required a high concentration of myo-inositol for growth. 2. The CDPdiacylglycerol-inositol 3-phosphatidyltransferase in the mutant cells showed an apparent Km for myo-inositol over 200-times higher than that of the enzyme in wild-type cells. The maximum velocity of the mutant enzyme was comparable to that of the wild-type enzyme. 3. In mutant cells, labelled myo-inositol, phosphate and acetate were incorporated into phosphatidylinositol at much slower rates than in wild-type cells. The phosphatidylinositol content of mutant cells was markedly lower than that observed in wild-type cells. 4. Genetic analysis showed that the growth phenotype of the mutant arose from a single nuclear gene mutation in a gene coding for CDPdiacylglycerol-inositol 3-phosphatidyltransferase. 5. The mutant showed a normal level of phosphatidylserine synthase activity. The phosphatidylserine synthase gene was located between ura3 and hom3 on chromosome V, whereas the CDPdiacylglycerol-inositol 3-phosphatidyltransferase gene showed no linkage with ura3. 6. Labelled acetate was incorporated into various lipids including triacylglycerols, diacylglycerols, sterol esters and phospholipids other than phosphatidylinositol at faster rates in mutant cells than in wild-type cells. Incorporation into both the fatty acid and the sterol moieties was facilitated in the mutant. 7. A striking change in the cell-division process was observed when phosphatidylinositol synthesis was limited. The results showed that phosphatidylinositol synthesis is involved in the cell-division cycle of yeast.  相似文献   

19.
Elevated levels of glucose and lipids can result in cellular dysfunction in eukaryotic cells ranging from Saccharomyces cerevisiae yeasts to human cells. Moreover, glucotoxicity and lipotoxicity can cause cell death, although the mechanism(s) for lethality is unclear. In the present study, we utilized Candida parapsilosis fatty acid desaturase (OLE1) and fatty acid synthase (FAS2) gene deletion mutants and wild-type (WT) yeast cells to unravel the relationship to glucose and lipid induced cell death in eukaryotic cells. Incubation of WT yeast cells with glucose led to the rapid accumulation of lipid droplets, whereas lipid droplet formation was severely impaired in yeast cells with deletion of OLE1 (ole1Δ/Δ) or FAS2 (fas2Δ/Δ). Interestingly, ole1Δ/Δ yeast cells died within hours in a 1% glucose medium without fatty acid supplementation, whereas the WT or fas2Δ/Δ yeast cells did not. In glucose medium, ole1Δ/Δ yeast cells accumulated saturated fatty acids, while fas2Δ/Δ did not. Addition of saturated fatty acids (e.g., palmitic acid) enhanced ole1Δ/Δ yeast cell death, whereas the addition of unsaturated fatty acids (e.g., oleic or palmitoleic acid) rescued cell death. Furthermore, palmitic acid and glucose medium induced apopotic cell death in ole1Δ/Δ yeast cells, which was dependent on mitochondrial function. Thus, our results show that glucotoxicity is directly linked to lipotoxicity, which we demonstrate is mediated by mitochondrial function.  相似文献   

20.
The chromosomal passenger complex (CPC) is a critical regulator of chromosome segregation during mitosis by correcting nonbipolar microtubule-kinetochore interactions. By severing these interactions, the CPC is thought to create unattached kinetochores that are subsequently sensed by the spindle assembly checkpoint (SAC) to prevent premature mitotic exit. We now show that spindle checkpoint function of the CPC and its role in eliminating nonbipolar attachments can be uncoupled. Replacing the chromosomal passenger protein INCENP with a mutant allele that lacks its coiled-coil domain results in an overt defect in a SAC-mediated mitotic arrest in response to taxol treatment, indicating that this domain is critical for CPC function in spindle checkpoint control. Surprisingly, this mutant could restore alignment and cytokinesis during unperturbed cell divisions and was capable of resolving syntelic attachments. Also, Aurora-B kinase was localized and activated normally on centromeres in these cells, ruling out a role for the coiled-coil domain in general Aurora-B activation. Thus, mere microtubule destabilization of nonbipolar attachments by the CPC is insufficient to install a checkpoint-dependent mitotic arrest, and additional, microtubule destabilization-independent CPC signaling toward the spindle assembly checkpoint is required for this arrest, potentially through amplification of the unattached kinetochore-derived checkpoint signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号