首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
The chloroplast gene ndhF was used to study phylogenetic relationships of the Polemoniaceae at two levels: among members of the Ericales and among genera of the family. Sequence data for interfamilial analyses consisted of 2266 bp for 14 members of the Ericales, including four species of the Polemoniaceae, plus three outgroup taxa. The Polemoniaceae were found to be related to Diospyros, Fouquieria, the Primulales, Rhododendron, and Impatiens, but relationships among taxa were generally not well supported. The precise position of the Polemoniaceae within the Ericales remains obscure. Data for intrafamilial analyses consisted of 1031 bp for 27 species of the Polemoniaceae, including at least one species from most genera of the family, plus five outgroup taxa. A single most parsimonious tree was identified. The analyses suggested that subfamily Cobaeoideae, excluding Loeselia, is monophyletic and that Huthia is sister to Cantua. Acanthogilia was sister to the remainder of subfamily Cobaeoideae. Subfamily Polemonioideae plus Loeselia formed four subclades that were strongly supported as monophyletic and represent the major lineages of the subfamily.  相似文献   

2.
The ability of the program POY, implementing optimization alignment, to deal with major indels is explored and discussed in connection with a phylogenetic analysis of the genus Secale based on partial Adh1 sequences. The Adh1 sequences used span exon 2-4. Nearly all variation is found in intron 2 and intron 3, which form the basis for the phylogenetic analyses. Both in some ingroup and outgroup taxa intron 3 has a major duplication. Previous phylogenetic analyses have repeatedly confirmed monophyly of both Secale and Hordeum, the latter being part of the outgroup. However, optimization alignment only recovers both genera as monophyletic when knowledge of the duplication is incorporated in the analysis. The phylogenetic relationships within Secale are not clearly resolved. Subspecific taxa of Secale strictum have identical sequences and they are confined to a monophyletic group. However, the two subspecific taxa of Secale cereale do not form a monophyletic group, and the position of Secale sylvestre is uncertain.  相似文献   

3.
Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.  相似文献   

4.
FLORICAULA/LEAFY (FLO/LFY) is a single-copy nuclear-encoded homeotic gene containing two introns. We have investigated the utility of the second intron of FLO/LFY (FLint2) as a tool for phylogeny reconstruction at lower taxonomic levels. As an example, the phylogeny of 46 Amorphophallus, two Pseudodracontium, and four outgroup species is reconstructed using maximum parsimony and maximum likelihood analyses of FLint2 sequences. We designed new primers based on conserved sequences of the second and third exon for use in a range of Aroid taxa to amplify and sequence the second intron. In Amorphophallus FLint2 proved to be rather short (143-222 bp), highly variable and unsaturated. In all but two species a single amplification product was found. Results from phylogenetic analysis of FLint2 are largely congruent with results using the chloroplast regions rbcL, matK, and trnL, and compare favorably in percentage of informative characters, overall homoplasy levels, number of well-supported clades in consensus trees and resolution of ingroup relationships within Amorphophallus. When amplification products are not too large, alignment is relatively straightforward, and sequences are used in combination with other fast evolving markers, the FLint2 intron may be a valuable new tool for phylogenetic studies at lower taxonomic levels.  相似文献   

5.
To test the validity of intron–exon structure as a phylogenetic marker, the intron–exon structure of EF-1α genes was investigated for starfish, acornworms, ascidians, larvaceans, and amphioxus and compared with that of vertebrates. Of the 11 distinct intron insertion sites found within the coding regions of the deuterostome EF-1α genes, 7 are shared by several taxa, while the remainder are unique to certain taxa. Examination of the shared introns of the deuterostome EF-1α gene revealed that independent intron loss or intron insertion must have occurred in separate lineages of the deuterostome taxa. Maximum parsimony analysis of the intron–exon data matrix recovered five parsimonious trees (consistency index = 0.867). From this result, we concluded that the intron–exon structure of deuterostome EF-1α has evolved more dynamically than previously thought, rendering it unsuitable as a phylogenetic marker. We also reconstructed an evolutionary history of intron insertion–deletion events on the deuterostome phylogeny, based on several molecular phylogenetic studies. These analyses revealed that the deuterostome EF-1α gene has lost individual introns more frequently than all introns simultaneously.  相似文献   

6.
We re‐examine the higher level phylogeny and evolutionary affinities of the family Gelechiidae (Lepidoptera: Gelechioidea) based on DNA sequence data for one mitochondrial gene (cytochrome c oxidase subunit I) and seven nuclear genes (Elongation Factor‐1α, wingless, Ribosomal protein S5, Isocitrate dehydrogenase, Cytosolic malate dehydrogenase, Glyceraldehyde‐3‐phosphate dehydrogenase and Carbamoylphosphate synthase domain protein). Fifty‐two taxa representing nearly all established subfamilies and tribes of Gelechiidae, and about 10% of described gelechiid genera, in addition to five outgroup taxa were sequenced. Data matrices (6157 bp total) were analysed under model‐based evolutionary methods (Maximum Likelihood and Bayesian Inference), resulting in novel high‐level phylogenetic interrelationships. The best supported cladogram divided the Gelechiidae into six distinct clades corresponding to the subfamilies Anacampsinae, Dichomeridinae, Apatetrinae, Thiotrichinae, Anomologinae and Gelechiinae (+ Physoptilinae, which were not available for study). The results suggest the following adjustments in gelechiid interrelationships: Brachmini is nested within Dichomeridinae; Anarsiini is the sister group of Chelariini; Pexicopiinae is the sister group of Apatetrinae, here suggested to be treated as a tribe Pexicopiini of Apatetrinae. A new subfamily Thiotrichinae ( subfam.n. ) is proposed on the basis of the resurrected genus Thiotricha Meyrick ( gen.rev. ), which includes Macrenches Meyrick, Palumbina Rondani and Polyhymno Chambers. Gelechiidae display a wide array of life‐history strategies, but the diversity in patterns of larval mode of life has direct phylogenetic correlation only below subfamily level, suggesting multiple origins and/or frequent reversals for traits such as external or internal feeding and leaf mining within the family.  相似文献   

7.
The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae.  相似文献   

8.
Increasing the number of characters used in phylogenetic studies is the next crucial step towards generating robust and stable phylogenetic hypotheses - i.e., strongly supported and consistent across reconstruction method. Here we describe a genomic approach to finding new protein-coding genes for systematics in nonmodel taxa, which can be PCR amplified from standard, slightly degraded genomic DNA extracts. We test this approach on Lepidoptera, searching the draft genomic sequence of the silk moth Bombyx mori, for exons > 500 bp in length, removing annotated gene families, and compared remaining exons with butterfly EST databases to identify conserved regions for primer design. These primers were tested on a set of 65 taxa primarily in the butterfly family Nymphalidae. We were able to identify and amplify six previously unused gene regions (Arginine Kinase, GAPDH, IDH, MDH, RpS2, and RpS5) and two rarely used gene regions (CAD and DDC) that when added to the three traditional gene regions (COI, EF-1alpha and wingless) gave a data set of 8114 bp. Phylogenetic robustness and stability increased with increasing numbers of genes. Smaller taxanomic subsets were also robust when using the full gene data set. The full 11-gene data set was robust and stable across reconstruction methods, recovering the major lineages and strongly supporting relationships within them. Our methods and insights should be applicable to taxonomic groups having a single genomic reference species and several EST databases from taxa that diverged less than 100 million years ago.  相似文献   

9.
 A phylogenetic study of the largest tribe of palms, the Areceae, was conducted using sequences of two low-copy nuclear genes. Previous morphological and plastid DNA studies have not supported the monophyly of the tribe, but have placed its members in a large clade that includes the monophyletic tribes Geonomeae, Cocoeae, Podococceae, and Hyophorbeae. We analyzed this large clade to test the monophyly of tribe Areceae with nuclear data, to explore relationships among its subtribes, and to identify other monophyletic groups. For 54 palm species, including members of all 17 subtribes of tribe Areceae, we sequenced regions of the malate synthase (MS) and phosphoribulokinase (PRK) genes. Simultaneous analysis of these regions revealed 52 shortest trees, all of which resolved tribe Areceae as polyphyletic. Subtribes Iguanurinae, Dypsidinae, Oncospermatinae, and Arecinae were also resolved as polyphyletic. A clade of Indo-Pacific taxa was resolved with strong support, and would be a suitable target for more focused study. Received February 7, 2001; accepted April 9, 2002 Published online: December 3, 2002  相似文献   

10.
Arginine decarboxylase (ADC) is an important enzyme in the production of putrescine and polyamines in plants. It is encoded by a single or low-copy nuclear gene that lacks introns in sequences studied to date. The rate of Adc amino acid sequence evolution is similar to that of ndhF for the angiosperm family studied. Highly conserved regions provide several target sites for PCR priming and sequencing and aid in nucleotide and amino acid sequence alignment across a range of taxonomic levels, while a variable region provides an increased number of potentially informative characters relative to ndhF for the taxa surveyed. The utility of the Adc gene in plant molecular systematic studies is demonstrated by analysis of its partial nucleotide sequences obtained from 13 representatives of Brassicaceae and 3 outgroup taxa, 2 from the mustard oil clade (order Capparales) and 1 from the related order Malvales. Two copies of the Adc gene, Adc1 and Adc2, are found in all members of the Brassicaceae studied to data except the basal genus Aethionema. The resulting Adc gene tree provides robust phylogenetic data regarding relationships within the complex mustard family, as well as independent support for proposed tribal realignments based on other molecular data sets such as those from chloroplast DNA.   相似文献   

11.
Molecular phylogenetic relationships among members of the odonate genus Libellula (Odonata: Anisoptera: Libellulidae) were examined using 735 bp of mitochondrial COI and 416 bp of 16S ribosomal RNA gene sequences. Considerable debate exists over several relationships within Libellula, as well over the status of two putative genera often placed as subgenera within Libellula: Ladona and Plathemis. Parsimony and maximum-likelihood analyses of the separate and combined data sets indicate that Plathemis is basal and monophyletic and that Ladona is the sister clade to the remainder of Libellula sensu stricto (s.s.) (all species within the genus Libellula, excluding Plathemis and Ladona). Moreover, two European taxa, Libellula fulva and L. depressa, were found to occupy a sister group relationship within the Ladona clade. Relationships within Libellula s.s. are less well resolved. However, monophyletic lineages within the genus are largely consistent with morphologically based subgeneric classifications. Although tree topologies from each analysis differed in some details, the differences were in no case statistically significant. The analysis of the combined COI and 16S data yielded trees with overall stronger support than analyses of either gene alone. Several analyses failed to support the monophyly of Libellula sensu lato due to the inclusion of one or more outgroup species. However, statistical comparisons of topologies produced by unconstrained analyses and analyses in which the monophyly of Libellula was constrained indicate that any differences are nonsignificant. Based on morphological data, we therefore reject the paraphyly of Libellula and accept the outgroup status of Orthemis ferruginea and Pachydiplax longipennis.  相似文献   

12.
Evolutionary relationships of the Pectinidae were examined using two mitochondrial genes (12S rRNA, 16S rRNA) and one nuclear gene (Histone H3) for 46 species. Outgroup taxa from Propeamussidae, Spondylidae and Limidae were also sequenced to examine the impact of outgroup choice on pectinid topologies. Our phylogenetic analyses resolved the Pectinidae as monophyletic, but many of the subfamilies and tribes within the family do not form monophyletic clades. The paraphyletic Aequipectinini group is the most basal member of the Pectinidae, with the Chlamydinae and Palliolinae representing the most recently derived pectinid groups. These results are in contrast with the current morphological hypothesis of Pectinidae evolution, which suggests the Chlamydinae and Pallioline are basal groups within the Pectinidae. Ingroup topology was found to be sensitive to outgroup choice and increasing taxon sampling within the Pectinidae resulted in more robust phylogenies.  相似文献   

13.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

14.
The spider family Pholcidae comprises a large number of mainly tropical, web-weaving spiders, and is among the most diverse and dominant spider groups in the world. The phylogeny of this family has so far been investigated exclusively using morphological data. Here, we present the first molecular data for the family analyzed in a phylogenetic context. Four different gene regions (12S rRNA, 16S rRNA, cytochrome c oxidase subunit I, 28S rRNA) and 45 morphological characters were scored for 31 pholcid and three outgroup taxa. The data were analyzed both for individual genes, combined molecular data, and molecular plus morphological data, using parsimony, maximum likelihood, and Bayesian methods. Some of the phylogenetic hypotheses obtained previously using morphology alone were also supported by our results, like the monophyly of pholcines and of the New World clade. On the other hand, some of the previous hypotheses could be discarded with some confidence (monophyly of holocnemines, the position of Priscula), and still others need further investigation (the position of holocnemines, ninetines, and Metagonia). The data obtained provide an excellent basis for future investigations of phylogenetic patterns both within the family and among spider families.  相似文献   

15.
Fragments of 12S and 16S mitochondrial DNA genes were sequenced for 14 acanthuroid taxa (representing all six families) and seven outgroup taxa. The combined data set contained 1399 bp after removal of all ambiguously aligned positions. Examination of site saturation indicated that loop regions of both genes are saturated for transitions, which led to a weighted parsimony analysis of the data set. The resulting tree topology generally agreed with previous morphological hypotheses, most notably placing the Luvaridae within the Acanthuroidei, but it also differed in several areas. The putative sister group of Acanthuroidei, Drepane, was recovered within the suborder, and the sister group of the family Acanthuridae, Zanclus, was likewise recovered within the family. Morphological characters were included to produce a combined data set of 1585 characters for 14 acanthuroid taxa and a single outgroup taxon. An analysis of the same 15 taxa was performed with only the DNA data for comparison. The total-evidence analysis supports the monophyly of the Acanthuridae. A parametric bootstrap suggests the possibility that the paraphyly of Acanthuridae indicated by the molecular analyses is the result of long-branch attraction. The disagreement between molecular and morphological data on the relationships of the basal acanthuroids and its putative sister taxon is unresolved.  相似文献   

16.
We analysed ketoacyl synthase domains of type I polyketide synthase (PKS) gene fragments of 163 lichenized and 51 non-lichenized fungi in a Bayesian phylogenetic framework. Lichenized taxa from several unrelated taxonomic groups, some of which produce identical secondary metabolites, were included. We found 12 clades of non-reducing PKS genes, which represent monophyletic PKS paralogues. PAML and SELECTON analyses indicated that purifying selection is the prevailing selective force in the evolution of the keto synthase domain of these paralogues. We detected no unambiguous correlation between PKS clades and the distribution of lichen substances. Together with the strong evidence for purifying selection, the wide distribution of certain paralogues in ascomycetes suggested early gene duplication events in the evolutionary history of this gene family in the Ascomycota.  相似文献   

17.
Insertions and deletions (indels) in chloroplast noncoding regions are common genetic markers to estimate population structure and gene flow, although relatively little is known about indel evolution among recently diverged lineages such as within plant families. Because indel events tend to occur nonrandomly along DNA sequences, recurrent mutations may generate homoplasy for indel haplotypes. This is a potential problem for population studies, because indel haplotypes may be shared among populations after recurrent mutation as well as gene flow. Furthermore, indel haplotypes may differ in fitness and therefore be subject to natural selection detectable as rate heterogeneity among lineages. Such selection could contribute to the spatial patterning of cpDNA haplotypes, greatly complicating the interpretation of cpDNA population structure. This study examined both nucleotide and indel cpDNA variation and divergence at six noncoding regions (psbB-psbH, atpB-rbcL, trnL-trnH, rpl20-5'rps12, trnS-trnG, and trnH-psbA) in 16 individuals from eight species in the Lecythidaceae and a Sapotaceae outgroup. We described patterns of cpDNA changes, assessed the level of indel homoplasy, and tested for rate heterogeneity among lineages and regions. Although regression analysis of branch lengths suggested some degree of indel homoplasy among the most divergent lineages, there was little evidence for indel homoplasy within the Lecythidaceae. Likelihood ratio tests applied to the entire phylogenetic tree revealed a consistent pattern rejecting a molecular clock. Tajima's 1D and 2D tests revealed two taxa with consistent rate heterogeneity, one showing relatively more and one relatively fewer changes than other taxa. In general, nucleotide changes showed more evidence of rate heterogeneity than did indel changes. The rate of evolution was highly variable among the six cpDNA regions examined, with the trnS-trnG and trnH-psbA regions showing as much as 10% and 15% divergence within the Lecythidaceae. Deviations from rate homogeneity in the two taxa were constant across cpDNA regions, consistent with lineage-specific rates of evolution rather than cpDNA region-specific natural selection. There is no evidence that indels are more likely than nucleotide changes to experience homoplasy within the Lecythidaceae. These results support a neutral interpretation of cpDNA indel and nucleotide variation in population studies within species such as Corythophora alta.  相似文献   

18.
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

19.
Recent molecular phylogenetic studies of Solanaceae have identified many well-supported clades within the family and have permitted the creation of a phylogenetic system of classification. Here we estimate the phylogeny for Iochrominae, a clade of Physaleae sensu Olmstead et al. (1999), which contains 34 Andean species encompassing an immense diversity of floral forms and colors. Using three nuclear regions, ITS, the second intron of LEAFY, and exons 2 to 9 of the granule-bound starch synthase gene (waxy), we evaluated the monophyly of the traditional genera comprising Iochrominae and assessed the extent of interspecific hybridization within the clade. Only one of the six traditionally recognized genera of Iochrominae was supported as monophyletic. Further, comparison of the individual nuclear data sets revealed two interspecific hybrid taxa and a third possible case. These hybrid taxa occur in the Amotape-Huancabamba zone, a region between the northern and central Andes that has the greatest diversity of Iochroma species and offers frequent opportunities for hybridization in areas of sympatry. We postulate that periodic hybridization events in this area coupled with pollinator-mediated selection and the potential for microallopatry may have acted together to promote diversification in montane Andean taxa, such as Iochrominae.  相似文献   

20.
We report a rapid radiation of a group of butterflies within the family Nymphalidae and examine some aspects of popular analytical methods in dealing with rapid radiations. We attempted to infer the phylogeny of butterflies belonging to the subtribe Coenonymphina sensu lato using five genes (4398 bp) with Maximum Parsimony, Maximum Likelihood and Bayesian analyses. Initial analyses suggested that the group has undergone rapid speciation within Australasia. We further analyzed the dataset with different outgroup combinations the choice of which had a profound effect on relationships within the ingroup. Modelling methods recovered Coenonymphina as a monophyletic group to the exclusion of Zipaetis and Orsotriaena, irrespective of outgroup combination. Maximum Parsimony occasionally returned a polyphyletic Coenonymphina, with Argyronympha grouping with outgroups, but this was strongly dependent on the outgroups used. We analyzed the ingroup without any outgroups and found that the relationships inferred among taxa were different from those inferred when either of the outgroup combinations was used, and this was true for all methods. We also tested whether a hard polytomy is a better hypothesis to explain our dataset, but could not find conclusive evidence. We therefore conclude that the major lineages within Coenonymphina form a near-hard polytomy with regard to each other. The study highlights the importance of testing different outgroups rather than using results from a single outgroup combination of a few taxa, particularly in difficult cases where basal nodes appear to receive low support. We provide a revised classification of Coenonymphina; Zipaetis and Orsotriaena are transferred to the tribe Eritina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号