首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetic circular dichroism of Co (II) carbonic anhydrase   总被引:2,自引:0,他引:2  
  相似文献   

2.
We report the first measurement of the magnetic circular dichroism (MCD) of the basic polypeptide antibiotic netropsin (Nt). The MCD shows that the longest wavelength absorption band of Nt is the sum of more than one component and permits a radically new interpretation of the circular dichroism of the complex which Nt forms with DNA. We conclude that Nt has no major effect on the CD and thus the helical structure of the bases of the DNA to which it is bound. Thus the ability of Nt to inhibit the function of DNA polymerase, RNA polymerase, and the photoreactivating enzyme must be mediated by factors other than a distortion of the helical structure of the bases.  相似文献   

3.
4.
M T Werth  M K Johnson 《Biochemistry》1989,28(9):3982-3988
The electronic and magnetic properties of the Fe(II)-thiolate centers in Fe(II)-metallothionein have been investigated by low-temperature magnetic circular dichroism and electron paramagnetic resonance spectroscopies at various levels of Fe(II) incorporation. In agreement with previous results [Good, M., & Vasák, M. (1986) Biochemistry 25, 8353-8356], rabbit liver metallothionein was found to bind a maximum of seven Fe(II) ions, with cluster formation occurring when more than four Fe(II) ions are bound at pH 8.5. The results indicate that all the iron in fully loaded Fe(II)-metallothionein is accommodated in Fe(II)-thiolate clusters that have either S = 0 or S = 2 ground states as a result of antiferromagnetic coupling between high-spin Fe(II) ions. By analogy with the cluster composition and mechanism of assembly that have been established for other divalent metal ions, the clusters with S = 0 and S = 2 ground states are attributed to tetranuclear and trinuclear centers, respectively. EPR signals indicative of S = 2 species were observed for samples containing monomeric tetrathiolate-Fe(II) centers and trinuclear Fe(II)-thiolate clusters. However, the nature of the zero-field splitting of the S = 2 ground states that is indicated by the EPR signals is not consistent with that deduced from M?ssbauer and magnetic circular dichroism studies, suggesting heterogeneity in both types of center.  相似文献   

5.
Absorption and magnetic circular dichroism (MCD) spectra are reported for chlorophyll (Chl) a and Chl b dissolved in nematic liquid crystal solvents. The spectra were measured with the dye molecules oriented uniaxially along the direction of. the magnetic field and measuring light beam. It is significant that under such conditions the MCD spectra recorded in the wavelength region of the Q and Soret bands of the chlorophyll are essentially unchanged with respect to rotation of the sample cell around this axis, even though there is almost complete orientation of the chlorophyll molecules by the liquid crystals. The MCD spectra of Chl a and b in the nematic liquid crystal solvents used in this study are surprisingly similar to the spectra obtained under isotropic conditions. These results illustrate an important technique with which to examine the optical spectra of dyes oriented in liquid crystal matrices in which the anisotropic effects can be reduced the negligible proportions by the application of a strong magnetic field parallel to the direction of the measuring light beam. The first deconvolution calculations are reported that describe the deconvolution of pairs of absorption and MCD spectra, in the Q and B band regions, for both Chl a and b. The spectral analysis to obtain quantitative estimates of transition energies was accomplished by carrying out detailed deconvolution calculations in which the both the absorption and MCD spectral envelopes were fitted with the same number of components; each pair of components had the same hand centres and bandwidth values. This procedure resulted in an assignment of each of the main transitions in the absorption spectra of both Chl a and b. Chl a is clearly monomeric, with Qy, Qx, By and Bx located at 671, 582, 439 and 431 nm, respectively. Analysis of the spectral data for Chl b located Qy, By and Bx, at 662, 476 and 464 nm, respectively.  相似文献   

6.
Magnetic circular dichroism (MCD) spectra were observed for native (Fe(III)) horseradish peroxidase (peroxidase, EC 1.11.1.7), its alkaline form and fluoro- and cyano-derivatives, and also for reduced (Fe(II)) horseradish peroxidase and its carbonmonoxy-- and cyano- derivatives. MCD spectra were obtained for the cyano derivative of Fe(III) horseradish peroxidase, and reduced horseradish peroxidase and its carbonmonoxy- derivative nearly identical with those for the respective myoglobin derivatives. The alkaline form of horseradish peroxidase exhibits a completely different MCD spectrum from that of myoglobin hydroxide. Thus it shows an MCD spectrum which falls into the ferric low-spin heme grouping. Native horseradish peroxidase and its fluoro derivatives show almost identical MCD spectra with those for the respective myoglobin derivatives in the visible region, though some changes were detected in the Soret region. Therefore it is concluded that the MCD spectra on the whole are sensitive to the spin state of the heme iron rather than to the porphyrin structures. The cyanide derivative of reduced horseradish peroxidase exhibited a characteristic MCD spectrum of the low-spin ferrous derivative like oxy-myoglobin.  相似文献   

7.
Magnetic circular dichroism of non-heme iron proteins   总被引:1,自引:0,他引:1  
The magnetic circular dichroism (MCD) at 45 kgauss has been determined for a group of non-heme iron proteins. Both transferrin and conalbumin exhibit a single, positive ellipticity band at 330 nm ([θ]M = 560). Oxy- and methemerythrin, spinach and clostridial ferredoxins and rubredoxin all display distinctive multibanded spectra which may reflect such factors as coordination of the metal, its ligands, metal bridging by other atoms, and varying degrees of metalmetal coupling. The MCD spectra of both ferredoxins and rubredoxin undergo dramatic change upon oxidoreduction providing a potential means for relating the electronic structure of the iron to protein function. In contrast to the plant ferredoxins, the magnetic field does not significantly affect the CD spectra of adrenodoxin and putidaredoxin.  相似文献   

8.
9.
The first MCD spectral data for an open shell first row transition metal complex of tetraphenyltetraacenaphthoporphyrin (TPTANP) are reported. The B (or Soret) band of cobalt tetraphenyltetraacenaphthoporphyrin (Co(II)TPTANP(-2)) exhibits an anomalous negative Faraday A(1) term as was reported previously in the case of ZnTPTANP, while a positive A(1) term is observed for the Q band. INDO/1 geometry optimizations predict that the TPTANP ligand is saddled due to steric hindrance at the ligand periphery to a slightly lesser extent than is the case with ZnTPTANP. The Q and B bands of CoTPTANP arising from the pi-system are blue shifted relative to those of ZnTPTANP, based on the "hypso" effect reported previously for planar porphyrin complexes of d(6-9) transition metals.  相似文献   

10.
Various complexes of myoglobin (Mb) with thiolate were studied by use of magnetic circular dichroism (MCD) spectroscopy. 1. MetMb-ethyl, n-propyl and isopropylmercaptan complexes offered MCD spectra similar to that of cytochrome P-450 (P-450) with respect to shape and intensity ratio of Soret MCD to Q0-0 MCD. The MCD spectra did not show any pH dependence. The complexes reduced by sodium dithionite exhibited the MCD spectrum of deoxyMb, indicative of release of thiolate anion from the heme iron. 2. Cysteine and cysteine methyl ester coordinated to the heme iron at pH 9.18 but not at pH 6.86 and 11.45. The complex formed at pH 9.18 gave an MCD spectrum similar to that of P-450, and an MCD spectrum of deoxy Mb on reduction with sodium dithionite. 3. The 2-mercaptoethanol complex exhibited three A terms associated with the Q0-0-1, and Soret transitions at pH 6.86 similar to those of Fe(II) cytochrome c, which indicates that Mb was reduced by this reagent at pH 6.86. At pH 9.18 2-mercaptoethanol gave an MCD spectrum similar to that of alkyl mercaptan just after the addition. With the time changed into deoxy Mb through some intermediate of reduced Mb-thiolate complex. At pH 11.45 2-mercaptoethanol formed complex which exhibited an MCD spectrum similar to those of other alkylmercaptans. 4. Sodium sulfide gave an MCD spectrum which resembled that of the normal thiol Mb complex just after addition at pH 6.86. The complex was gradually reduced to give 610 nm trough in addition to the MCD of deoxy Mb. The Mb-sulfur complex formed at pH 9.18 was gradually reduced to give an MCD spectrum which was fairly different from that of deoxy Mb. A similar MCD spectrum was observed at pH 11.45 just after the addition of Na2S. These results were considered to suggest the saturation of one of the conjugated double bonds of the porphyrin by sulfur.  相似文献   

11.
Poly(dI-dC).poly(dI-dC) was studied using vibrational circular dichroism and IR spectroscopy in both the base deformation C = O and symmetric PO2- stretching regions. VCD spectra of this duplex under low salt conditions are consistent with its having a B-form structure. Addition of 5 M NaCl leads to relatively uniform VCD intensity loss which is consistent with loss of helical structure rather than formation of an intermediate state between the B and Z forms. This duplex polymer under high salt conditions with added NiCl2 shows aggregation effects, but its IR and VCD spectra have characteristic features of the Z-form DNA conformation. The cooperative change of backbone and base pair structure upon thermal denaturation is indicated by the simultaneous collapse of the VCD at 65 degrees C in both the PO2- and C = O stretching regions. This study further demonstrates that the VCD bandshape of a specific localized nucleic acid vibrational transition can be a useful indicator of the helical handedness. The empirical conformational interpretations are supported by simulated VCD spectra, which are in excellent agreement with the experimental results, based on dipole coupling calculations.  相似文献   

12.
E S Pysh 《Biopolymers》1974,13(8):1563-1571
Recent experiments have shown that the circular dichroism of poly-L -proline II is negative from 130 to 220 nm. Therefore, calculations based on exciton interactions alone cannot give the observed spectrum. The present calculations were carried out in the framework of the random-phase approximation. It includes exciton coupling of π-π* transitions. It also couples the π-π* transitions to the higher energy density of states (1) of the polymer chain via atomic polarizabilities, and (2) of bound solvent molecules. The relative importance of (1) and (2) is discussed in light of available experimental evidence. Qualitatively, (1) and (2) modify the excition-only results in the same way: the negative band near 200 nm shifts to longer wavelengths and increases in intensity; the crossover near 215 nm shifts to longer wavelengths; and the positive band near 225 nm shifts to longer wavelengths and decreases in intensity.  相似文献   

13.
14.
Absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of beef liver catalase at pH 5.0 and 6.9, and its complexes with NaF, KCNO, NaCNS, NaN3 and NaCN, have been measured between 250 nm and 700 nm at room temperature. The pH 6.9 native catalase MCD shows the presence of several additional transitions not resolved in the absorption spectrum. While these bands can be seen in the spectra of all the derivatives, with the exception of the cyanide, their relative intensities changes considerably between complexes. Of special interest in the MCD of ferric hemes is the signal intensity at about 400 nm and 620 nm. The data indicate that the MCD intensity at 620 nm increases as the high spin iron porphyrin fraction increases, reaching a maximum with the fluoride complex. The 430 nm band intensity increases as the proportion of low spin iron increases, reaching a maximum with the cyanide complex. The MCD spectra also indicate clearly the existence of spin mixtures in the complexes with CNO-, CNS-, and N3-, where both the 430 nm and 620 nm bands have appreciable intensity. It is significant that despite almost identical absorption spectra the CNS- complex has higher fraction of low spin iron than either the CNO- or the N3- species. The differences between the pH 5 and 6.9 MCD spectra of the native catalase suggest that the environment of the heme centre is sensitive to protonation.  相似文献   

15.
16.
T Imae  S Ikeda 《Biopolymers》1975,14(6):1213-1221
Circular dichroism and absorption spectra are measured on mixed solutions of acridine orange and poly(S-carboxymethyl-L -cysteine) at different pH and P/D mixing ratios. The observed circular dichroism spectra are classified into several types, mainly based on the number and sign of circular dichroic bands in the visible region. Three of them are associated with the absorption spectra characteristic of dimeric dye or higher aggregates of dye. Type I is observed with solutions, of which the pH is acid and P/D is higher than 4, and it has an unsymmetrical pair of positive and negative dichroic bands at 470 and 430 nm. This type is induced on the dye bound to the polymer in the β-conformation. Types II and III are considered to be characteristic of randomly coiled polymers. Type II is exhibited by solutions of P/D higher than 1 at pH 5–7 and has two dichroic bands around the same wavelengths as Type I but with opposite signs and an additional positive band at 560 nm. Type III, shown by solutions of P/D 2–0.6 at pH 6–10.5, has three dichroic bands around the same wavelengths as Type II but with signs opposite to it. The other two types of circular dichroism, induced for the solutions of P/D less than 1 at slightly acid pH, are associated with the absorption spectra of monomeric dye and are observed with disordered or randomly coiled polymer. They have a pair of dichroic bands at 540 and 425 nm, and the signs of these bands are opposite to each other in these two types.  相似文献   

17.
The two iron-only hydrogenases (I and II) from Clostridium pasteurianum have been investigated by variable temperature magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopies. Samples were studied both reduced with dithionite under an atmosphere of H2 and after oxidation with thionine. The results are consistent with four and two [4Fe-4S]1+,2+ (F)-clusters in hydrogenases I and II, respectively. All four F-clusters are reduced and paramagnetic in reduced hydrogenase I, with up to one exhibiting an S = 3/2 ground state and the remainder having conventional S = 1/2 ground states. Both F-clusters have S = 1/2 ground states in reduced hydrogenase II; however, one appears to be only partially reduced under the conditions used for reduction. MCD studies of the oxidized enzymes show no temperature-dependent features in the visible region which can be attributed to the EPR-active S = 1/2 hydrogen-activating cluster, suggesting predominantly oxygen and nitrogen coordination for the iron atoms of this center. However, temperature-dependent MCD transitions arising from a hitherto undetected S greater than 1/2 Fe-S clusters are apparent in both oxidized hydrogenases. Detailed EPR studies of oxidized hydrogenase I revealed resonances from an S = 3/2 species, however, spin quantitation reveals this to be a trace component that is unlikely to be responsible for the observed low temperature MCD spectrum. The nature and origin of these S greater than 1/2 Fe-S clusters are discussed in light of the available spectroscopic data for these and other iron-only hydrogenases.  相似文献   

18.
Nitric oxide synthase (NOS) catalyzes the NADPH- and O2-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an NG-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV–Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O2, NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at ?50 °C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH4)-binding site and low BH4-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH4-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH4 (>150 μM) over gsNOS was present upon single turnover reaction in which O2 was bubbled into dithionite-reduced NHA-bound protein solution at ?35 °C or ?50 °C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号