首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aminoacyl-tRNA synthetases link tRNAs with their cognate amino acid. In some cases, their fidelity relies on hydrolytic editing that destroys incorrectly activated amino acids or mischarged tRNAs. We present structures of leucyl-tRNA synthetase complexed with analogs of the distinct pre- and posttransfer editing substrates. The editing active site binds the two different substrates using a single amino acid discriminatory pocket while preserving the same mode of adenine recognition. This suggests a similar mechanism of hydrolysis for both editing substrates that depends on a key, completely conserved aspartic acid, which interacts with the alpha-amino group of the noncognate amino acid and positions both substrates for hydrolysis. Our results demonstrate the economy by which a single active site accommodates two distinct substrates in a proofreading process critical to the fidelity of protein synthesis.  相似文献   

2.
The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar sequences/structures from a wide variety of other species. Systematic truncation and mutagenesis of the IA3 polypeptide revealed that the inhibitory activity is located in the N-terminal half of the sequence. Crystal structures of different forms of IA3 complexed with proteinase A showed that residues in the N-terminal half of the IA3 sequence became ordered and formed an almost perfect alpha-helix in the active site of the enzyme. This potent, specific interaction was directed primarily by hydrophobic interactions made by three key features in the inhibitory sequence. Whereas IA3 was cut as a substrate by the nontarget aspartic proteinases, it was not cleaved by proteinase A. The random coil IA3 polypeptide escapes cleavage by being stabilized in a helical conformation upon interaction with the active site of proteinase A. This results, paradoxically, in potent selective inhibition of the target enzyme.  相似文献   

3.
Steiner RA  Kooter IM  Dijkstra BW 《Biochemistry》2002,41(25):7955-7962
The crystal structures of the copper-dependent Aspergillus japonicus quercetin 2,3-dioxygenase (2,3QD) complexed with the inhibitors diethyldithiocarbamate (DDC) and kojic acid (KOJ) are reported at 1.70 and 2.15 A resolution, respectively. Both inhibitors asymmetrically chelate the metal center and assume a common orientation in the active site cleft. Their molecular plane blocks access to the inner portion of the cavity which is lined by the side chains of residues Met51, Thr53, Phe75, Phe114, and Met123 and which is believed to bind the flavonol B-ring of the natural substrate. The binding of the inhibitors brings order into the mixed coordination observed in the native enzyme. DDC and KOJ induce a single conformation of the Glu73 side chain, although in different ways. In the presence of DDC, Glu73 is detached from the copper ion with its carboxylate moiety pointing away from the active site cavity. In contrast, when KOJ is bound, Glu73 ligates the Cu ion through its O(epsilon)(1) atom with a monodentate geometry. Compared to the native coordinating conformation, this conformation is approximately 90 degrees rotated about the chi(3) angle. This latter Glu73 conformation is compatible with the presence of a bound substrate.  相似文献   

4.
In the design of inhibitors of phosphosugar metabolizing enzymes and receptors with therapeutic interest, malonate has been reported in a number of cases as a good and hydrolytically-stable surrogate of the phosphate group, since both functions are dianionic at physiological pH and of comparable size. We have investigated a series of malonate-based mimics of the best known phosphate inhibitors of class II (zinc) fructose-1,6-bis-phosphate aldolases (FBAs) (e.g., from Mycobacterium tuberculosis), type I (zinc) phosphomannose isomerase (PMI) from Escherichia coli, and phosphoglucose isomerase (PGI) from yeast. In the case of FBAs, replacement of one phosphate by one malonate on a bis-phosphorylated inhibitor (1) led to a new compound (4) still showing a strong inhibition (K(i) in the nM range) and class II versus class I selectivity (up to 8×10(4)). Replacement of the other phosphate however strongly affected binding efficiency and selectivity. In the case of PGI and PMI, 5-deoxy-5-malonate-D-arabinonohydroxamic acid (8) yielded a strong decrease in binding affinities when compared to its phosphorylated parent compound 5-phospho-D-arabinonohydroxamic acid (2). Analysis of the deposited 3D structures of the kinetically evaluated enzymes complexed to the phosphate-based inhibitors indicate that malonate could be a good phosphate surrogate only if phosphate is not tightly bound at the enzyme active site, such as in position 7 of compound 1 for FBAs. These observations are of importance for further design of inhibitors of phosphorylated-compounds metabolizing enzymes with therapeutic interest.  相似文献   

5.
A Gustchina  I T Weber 《FEBS letters》1990,269(1):269-272
The crystal structure of HIV-1 protease with an inhibitor has been compared with the structures of non-viral aspartic proteases complexed with inhibitors. In the dimeric HIV-1 protease, two 4-stranded beta-sheets are formed by half of the inhibitor, residues 27-29, and the flap from each monomer. In the monomeric non-viral enzyme the single flap does not form a beta-sheet with an inhibitor. The HIV-1 protease shows more interactions with a longer peptide inhibitor than are observed in non-viral aspartic protease-inhibitor complexes. This, and the large movement of the flaps, restricts the conformation of the protease cleavage sites in the retroviral polyprotein precursor.  相似文献   

6.
The conformation and dynamics of the ATP binding site of cytidine monophosphate kinase from Escherichia coli (CMPK(coli)), which catalyzes specifically the phosphate exchange between ATP and CMP, was studied using the fluorescence properties of 3'-anthraniloyl-2'-deoxy-ADP, a specific ligand of the enzyme. The spectroscopic properties of the bound fluorescent nucleotide change strongly with respect to those in aqueous solution. These changes (red shift of the absorption and excitation spectra, large increase of the excited state lifetime) are compared to those observed in different solvents. These data, as well as acrylamide quenching experiments, suggest that the anthraniloyl moiety is protected from the aqueous solvent upon binding to the ATP binding site, irrespective of the presence of CMP or CDP. The protein-bound ADP analogue exhibits a restricted fast subnanosecond rotational motion, completely blocked by CMP binding. The energy-minimized models of CMPK(coli) complexed with 3'-anthraniloyl-2'-deoxy-ADP using the crystal structures of the ligand-free protein and of its complex with CDP (PDB codes and, respectively) were compared to the crystal structure of UMP/CMP kinase from Dictyostelium discoideum complexed with substrates (PDB code ). The key residues for ATP/ADP binding to CMPK(coli) were identified as R157 and I209, their side chains sandwiching the adenine ring. Moreover, the residues involved in the fixation of the phosphate groups are conserved in both proteins. In the model, the accessibility of the fluorescent ring to the solvent should be substantial if the LID conformation remained unchanged, by contrast to the fluorescence data. These results provide the first experimental arguments about an ATP-mediated induced-fit of the LID in CMPK(coli) modulated by CMP, leading to a closed conformation of the active site, protected from water.  相似文献   

7.
Two different structures of ligand-free HIV protease have been determined by X-ray crystallography. These structures differ in the position of two 12 residue, β-hairpin regions (or “flaps”) which cap the active site. The movements of the flaps must be involved in the binding of substrates since, in either conformation, the flaps block the binding site. One of these structures is similar to structures of the ligand-bound enzyme; however, the importance of both structures to enzyme function is unclear. This transformation takes place on a time scale too long for conventional molecular dynamics simulations, so the process was studied by first identifying a reaction path between the two structures and then calculating the free energy along this path using umbrella sampling. For the ligand-free enzyme, it is found that the two structures are nearly equally stable, with the ligand-bound-type structure being less stable, consistent with X-ray crystallography data. The more stable open structure does not have a lower potential energy, but is stabilized by entropy. The transition occurs through a collapse and reformation of the β-sheet structure of the conformationally flexible, glycine-rich flap ends. Additionally, some problems in studying conformational changes in proteins through the use of a single reaction path are addressed. Proteins 32:7–16, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The β-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of “U”. In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms.  相似文献   

9.
The structures of 5-aminolaevulinic acid dehydratase complexed with two irreversible inhibitors (4-oxosebacic acid and 4,7-dioxosebacic acid) have been solved at high resolution. Both inhibitors bind by forming a Schiff base link with Lys 263 at the active site. Previous inhibitor binding studies have defined the interactions made by only one of the two substrate moieties (P-side substrate) which bind to the enzyme during catalysis. The structures reported here provide an improved definition of the interactions made by both of the substrate molecules (A- and P-side substrates). The most intriguing result is the novel finding that 4,7-dioxosebacic acid forms a second Schiff base with the enzyme involving Lys 210. It has been known for many years that P-side substrate forms a Schiff base (with Lys 263) but until now there has been no evidence that binding of A-side substrate involves formation of a Schiff base with the enzyme. A catalytic mechanism involving substrate linked to the enzyme through Schiff bases at both the A- and P-sites is proposed.  相似文献   

10.
Gene encoding aspartyl dipeptidase from Xenopus levies (PepExl) is upregulated by thyroid hormone and is proposed to play a significant role in resorption of tadpole tail during metamorphosis. However, the importance of peptidase activity for the resorption of the tail remain elusive. Here we report the crystal structures of first eukaryotic S51 peptidase, PepExl, in its ligand-free and Asp-bound states at 1.4 and 1.8 Å resolutions, respectively. The active site is located at dimeric interface and the catalytic triad is found to be dissembled in ligand-free and assembled in Asp-bound state. Structural comparison and molecular dynamic simulations of ligand-free and Asp-bound states shows that distinct loop (loop-A) plays an important role in active site shielding, substrate binding and enzyme activation. This study illuminates the Asp-X dipeptide binding in PepExl is associated with ordering of the loop-A and assembly of residues of catalytic triad in active conformation for enzymatic activity.  相似文献   

11.
The hepatitis C virus NS3 protein contains a serine protease domain with a chymotrypsin-like fold, which is a target for development of therapeutics. We report the crystal structures of this domain complexed with NS4A cofactor and with two potent, reversible covalent inhibitors spanning the P1-P4 residues. Both inhibitors bind in an extended backbone conformation, forming an anti-parallel beta-sheet with one enzyme beta-strand. The P1 residue contributes most to the binding energy, whereas P2-P4 side chains are partially solvent exposed. The structures do not show notable rearrangements of the active site upon inhibitor binding. These results are significant for the development of antivirals.  相似文献   

12.
The structures of 5-aminolaevulinic acid dehydratase (ALAD) complexed with substrate (5-aminolaevulinic acid) and three inhibitors: laevulinic acid, succinylacetone and 4-keto-5-aminolaevulinic acid, have been solved at high resolution. The ligands all bind by forming a covalent link with Lys263 at the active site. The structures define the interactions made by one of the two substrate moieties that bind to the enzyme during catalysis. All of the inhibitors induce a significant ordering of the flap covering the active site. Succinylacetone appears to be unique by inducing a number of conformational changes in loops covering the active site, which may be important for understanding the co-operative properties of ALAD enzymes. Succinylacetone is produced in large amounts by patients suffering from the hereditary disease type I tyrosinaemia and its potent inhibition of ALAD also has implications for the pathology of this disease. The most intriguing result is that obtained with 4-keto-5-amino-hexanoic acid, which seems to form a stable carbinolamine intermediate with Lys263. It appears that we have defined the structure of an intermediate of Schiff base formation that the substrate forms upon binding to the P-site of the enzyme.  相似文献   

13.
Mulakala C  Reilly PJ 《Proteins》2002,49(1):125-134
Family 47 alpha-1,2-mannosidases are crucial enzymes involved in N-glycan maturation in the endoplasmic reticula and Golgi apparati of eukaryotic cells. High-resolution crystal structures of the human and yeast endoplasmic reticulum alpha-1,2-mannosidases have been recently determined, the former complexed with the inhibitors 1-deoxymannojirimycin and kifunensine, both of which bind in its active site in the unusual 1C4 conformation. However, unambiguous identification of the catalytic proton donor and nucleophile involved in glycoside bond hydrolysis was not possible from this structural information. In this work, alpha-D-galactose, alpha-D-glucose, and alpha-D-mannose were computationally docked in the active site in the energetically stable 4C1 conformation as well as in the 1C4 conformation to compare their interaction energetics. From these docked structures, a model for substrate and conformer selectivity based on the dimensions of the active site was proposed. Alpha-D-galactopyranosyl-(1-->2)-alpha-D-mannopyranose, alpha-D-glucopyranosyl-(1-->2)-alpha-D-mannopyranose, and alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranose were also docked into the active site with their nonreducing-end residues in the 1C4 and E4 (representing the transition state) conformations. Based on the docked structure of alpha-D-mannopyranosyl-E4-(1-->2)-alpha-D-mannopyranose, the catalytic acid and base are Glu132 and Glu435, respectively.  相似文献   

14.
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.  相似文献   

15.
The ubiquitous enzyme ATP sulfurylase (ATPS) catalyzes the primary step of intracellular sulfate activation, the formation of adenosine 5'-phosphosulfate (APS). It has been shown that the enzyme catalyzes the generation of APS from ATP and inorganic sulfate in vitro and in vivo, and that this reaction can be inhibited by a number of simple molecules. Here, we present the crystal structures of ATPS from the yeast Saccharomyces cerevisiae complexed with compounds that have inhibitory effects on the catalytic reaction of ATPS. Thiosulfate and ADP mimic the substrates sulfate and ATP in the active site, but are non-reactive and thus competitive inhibitors of the sulfurylase reaction. Chlorate is bound in a crevice between the active site and the intermediate domain III of the complex structure. It forms hydrogen bonds to residues of both domains and stabilizes a "closed" conformation, inhibiting the release of the reaction products APS and PPi. These new observations are evidence for the crucial role of the displacement mechanism for the catalysis by ATPS.  相似文献   

16.
N-Acetyl-l-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 Å resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-l-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates ∼ 24°-28° away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the β-phosphate of ATP normally binds, suggesting that ATP is first anchored to the β-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its β-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11.  相似文献   

17.
It has been shown that L-731988, a potent integrase inhibitor, targets a conformation of the integrase enzyme formed when complexed to viral DNA, with the 3′-end dinucleotide already cleaved. It has also been shown that diketo acid inhibitors bind to the strand transfer complex of integrase and are competitive with the host target DNA. However, published X-ray structures of HIV integrase do not include the DNA; thus, there is a need to develop a model representing the strand transfer complex. In this study, we have constructed an active-site model of the HIV-1 integrase complexed with viral DNA using the crystal structure of DNA-bound transposase and have identified a binding mode for inhibitors. This proposed binding mechanism for integrase inhibitors involves interaction with a specific Mg2 + in the active site, accentuated by a hydrophobic interaction in a cavity formed by a flexible loop upon DNA binding. We further validated the integrase active-site model by selectively mutating key residues predicted to play an important role in the binding of inhibitors. Thus, we have a binding model that is applicable to a wide range of potent integrase inhibitors and is consistent with the available resistant mutation data.  相似文献   

18.
The transfer of the phosphopantetheine chain from coenzyme A (CoA) to the acyl carrier protein (ACP), a key protein in both fatty acid and polyketide synthesis, is catalyzed by ACP synthase (AcpS). Streptomyces coelicolor AcpS is a doubly promiscuous enzyme capable of activation of ACPs from both fatty acid and polyketide synthesis and catalyzes the transfer of modified CoA substrates. Five crystal structures have been determined, including those of ligand-free AcpS, complexes with CoA and acetyl-CoA, and two of the active site mutants, His110Ala and Asp111Ala. All five structures are trimeric and provide further insight into the mechanism of catalysis, revealing the first detailed structure of a group I active site with the essential magnesium in place. Modeling of ACP binding supported by mutational analysis suggests an explanation for the promiscuity in terms of both ACP partner and modified CoA substrates.  相似文献   

19.
Apoptosis, or programmed cell death, plays a central role in the development and homeostasis of an organism. The breakdown of cellular proteins in apoptosis is mediated by caspases, which comprise a highly conserved family of cysteine proteases with specificity for aspartic acid residues at the P1 positions of their substrates. Multiple lines of evidence show that caspase-9 is critical for an apoptosis pathway mediated via the mitochondria. In this study, the three-dimensional structure of the catalytic domain of caspase-9 and its interaction with the inhibitor acetyl-Asp-Val-Ala-Asp fluoromethyl ketone (Ac-DVAD-fmk) have been predicted by a segment matching modeling procedure. As expected, the predicted caspase-9 structure shows both a high similarity in the overall folding topology and remarkable differences in the surface loop regions as compared to other caspase family members such as caspase-1, -3 and -8, for which crystal structures have been determined. This kind of comparative analysis reflects the convergence-divergence duality among the caspases. Moreover, some subtle differences have been observed between caspase-9 and caspase-3 in the subsite contacts with the covalently linked inhibitor Ac-DVAD-fmk. Based on the X-ray structural analysis of caspase-8, a main chain carbonyl oxygen appears to be involved in a catalytic triad with the active site Cys and His residues. The corresponding carbonyl oxygen in caspase-9, together with other expected features of the catalytic apparatus, appears in our model. The predicted structure of caspase-9 can serve as a reference for subsite analysis relative to rational design of highly selective caspase inhibitors for therapeutic application.  相似文献   

20.
Caspases have in the past decade become some of the most intensely pursued targets for the design of small-molecule inhibitors. Two significant technological roadblocks to developing caspase-binding molecules are the poor solubility of a subset of the bacterially expressed proteins and the instability of the renatured proteins that results from rapid inactivating autolysis at high protein concentrations. In this report, we present a generalized method of renaturing human caspases and inhibiting the self-proteolytic activity of the enzymes without a need for covalent active-site inhibitors. Our method, which involves blocking the S1 region of the active site with malonate, enables one to inhibit fully the inactivating autolysis in human caspases and increases the yields of renatured active enzyme. It furthermore does not necessitate removal of malonate prior to setting up enzymatic assays since as high as 100-mM concentrations of malonate do not compete efficiently with caspase substrates or larger caspase inhibitors for binding to the active site. The method described in this report simplifies greatly caspase purification and makes it possible to stabilize the enzymes against autolysis without a need for costly, and frequently synthetically challenging, small-molecule inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号