首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine actinomycetes have generated much recent interest as a potentially valuable source of novel antibiotics. Like terrestrial actinomycetes the marine actinomycetes are shown here to produce mycothiol as their protective thiol. However, a novel thiol, U25, was produced by MAR2 strain CNQ703 upon progression into stationary phase when secondary metabolite production occurred and became the dominant thiol. MSH and U25 were maintained in a reduced state during early stationary phase, but become significantly oxidized after 10 days in culture. Isolation and structural analysis of the monobromobimane derivative identified U25 as a homolog of mycothiol in which the acetyl group attached to the nitrogen of cysteine is replaced by a propionyl residue. This N-propionyl-desacetyl-mycothiol was present in 13 of the 17 strains of marine actinomycetes examined, including five strains of Salinispora and representatives of the MAR2, MAR3, MAR4 and MAR6 groups. Mycothiol and its precursor, the pseudodisaccharide 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol, were found in all strains. High levels of mycothiol S-conjugate amidase activity, a key enzyme in mycothiol-dependent detoxification, were found in most strains. The results demonstrate that major thiol/disulfide changes accompany secondary metabolite production and suggest that mycothiol-dependent detoxification is important at this developmental stage.  相似文献   

2.
Chen L  Yu H  Lu Y  Jiang W 《Biotechnology letters》2005,27(15):1129-1134
An ORF located immediately downstream of glnR gene was cloned from Amycolatopsis mediterranei U32 and was named lh3. Sequence analysis revealed that lh3 encodes a putative acetyltransferase, which shows high amino acid sequence similarities to the mycothiol synthase (MshD) from other actinomycetes. For functional analysis, mutation in lh3 gene was generated by gene replacement with an apramycin resistance gene through homologous recombination. Compared with the wild type strain, the resulting mutant was more sensitive to H2O2, apramycin and erythromycin by two- to three-fold. These results suggest that the lh3 gene plays an important role in the course of detoxification in A. mediterranei U32.  相似文献   

3.
To utilize Pichia pastoris to produce glutathione, an intracellular expression vector harboring two genes (gsh1 and gsh2) from Saccharomyces cerevisiae encoding enzymes involved in glutathione synthesis and regulated by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter was transformed into P. pastoris GS115. Through Zeocin resistance and expression screening, a transformant that had higher glutathione yield (217 mg/L) in flask culture than the host strain was obtained. In fed-batch culture process, this recombinant strain displayed high activity for converting precursor amino acids into glutathione. The glutathione yield and biomass achieved 4.15 g/L and 98.15 g (dry cell weight, DCW)/L, respectively, after 50 h fermentation combined with addition of three amino acids (15 mmol/L glutamic acid, 15 mmol/L cysteine, and 15 mmol/L glycine).  相似文献   

4.
The present study investigated the effects of three constituent amino acids on glutathione production in flask culture of Candida utilis. Although l-glutamic acid and glycine had little impact on cell growth and glutathione biosynthesis, l-cysteine positively influenced glutathione production, despite inhibiting cell growth when it was added prior to stationary phase. Adding 8 mmol/L of l-cysteine to the culture broth at 16 h boosted glutathione production by 91%, increasing the intracellular glutathione content by 106% compared to untreated controls. A temperature-shift strategy, in which we shifted batch and fed-batch cultures of C. utilis from 30 to 26°C, also significantly enhanced glutathione production. Applying both strategies (i.e. adding 20 mmol/L l-cysteine and shifting the temperature from 30 to 26°C) at 33 h enhanced the glutathione concentration and the intracellular glutathione content to 1,312 mg/L and 3.75%, respectively, during fed-batch cultivation (glucose feeding at a constant rate of 18.3 g/h). The average specific glutathione production rate under this condition was 129% higher than that of the control without strategy.  相似文献   

5.
The entire (e) locus of tomato (Solanum lycopersicum L.) controls leaf morphology. Dominant E and recessive e allele of the locus produce pinnate compound and complex reduced leaves. Previous research had indicated that SlIAA9, an Aux/IAA gene, was involved in tomato leaf morphology. Down-regulation of SlIAA9 gene by antisense transgenic method decreased the leaf complex of tomato and converted tomato compound leaves to simple leaves. The leaf morphology of these transgenic lines was similar with leaf morphology of tomato entire mutant. In this paper, we report that a single-base deletion mutation in the coding region of SlIAA9 gene results in tomato entire mutant phenotypes.  相似文献   

6.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

7.
Glutathione (GSH) is one of the main antioxidants in plants. Legumes have the specificity to produce a GSH homolog, homoglutathione (hGSH). We have investigated the regulation of GSH and hGSH synthesis by nitric oxide (NO) in Medicago truncatula roots. Analysis of the expression level of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GSHS) and homoglutathione synthetase (hGSHS) after treatment with sodium nitroprusside (SNP) and nitrosoglutathione (GSNO), two NO-donors, showed that γ-ecs and gshs genes are up regulated by NO treatment whereas hgshs expression is not. Differential accumulation of GSH was correlated to gene expression in SNP-treated roots. Our results provide the first evidence that GSH synthesis pathway is regulated by NO in plants and that there is a differential regulation between gshs and hgshs in M. truncatula. G. Innocenti and C. Pucciariello have contributed equally to the work.  相似文献   

8.
The thermophilic and halotolerant nature of Rubrobacter xylanophilus led us to investigate the accumulation of compatible solutes in this member of the deepest lineage of the Phylum Actinobacteria. Trehalose and mannosylglycerate (MG) were the major compounds accumulated under all conditions examined, including those for optimal growth. The addition of NaCl to a complex medium and a defined medium had a slight or negligible effect on the accumulation of these compatible solutes. Glycine betaine, di-myo-inositol-phosphate (DIP), a new phosphodiester compound, identified as di-N-acetyl-glucosamine phosphate and glutamate were also detected but in low or trace levels. DIP was always present, except at the highest salinity examined (5% NaCl) and at the lowest temperature tested (43°C). Nevertheless, the levels of DIP increased with the growth temperature. This is the first report of MG and DIP in an actinobacterium and includes the identification of the new solute di-N-acetyl-glucosamine phosphate.  相似文献   

9.
Sulfate assimilation and glutathione synthesis were traditionally believed to be differentially compartmentalised in C4 plants with the synthesis of cysteine and glutathione restricted to bundle sheath and mesophyll cells, respectively. Recent studies, however, showed that although ATP sulfurylase and adenosine 5′ phosphosulfate reductase, the key enzymes of sulfate assimilation, are localised exclusively in bundle sheath in maize and other C4 monocot species, this is not true for the dicot C4 species of Flaveria. On the other hand, enzymes of glutathione biosynthesis were demonstrated to be active in both types of maize cells. Therefore, in this review the recent findings on compartmentation of sulfate assimilation and glutathione metabolism in C4 plants will be summarised and the consequences for our understanding of sulfate metabolism and C4 photosynthesis will be discussed.  相似文献   

10.
Two major forms of glutathione S-transferase are known in Drosophila melanogaster: GST D and GST 2. In the present paper we report the existence of a third major form of glutathione S-transferase in Drosophila simulans. Induction with phenobarbital revealed a different regulation of GST between these species. Despite the fact that these two species are closely related, there was a difference in the expression profile of the enzyme implicated in the detoxification system, suggesting variations in capacity to suit their environment.  相似文献   

11.
The relationship between Litsea and related genera is currently unclear. Previous molecular studies on these taxa using cpDNA and nrITS were unable to produce well-resolved phylogenetic trees. In this study, we explored the potential of the rpb2 gene as a source of molecular information to better resolve the phylogenetic analysis. Although rpb2 was believed to be a single-copy gene, our cloning results showed that most species examined possessed several copies of these sequences. However, the genetic distance among copies from any one species was low, and these copies always formed monophyletic groups in our molecular trees. Our phylogenetic analyses of rpb2 data resulted in better resolved tree topologies compared to those based on cpDNA or nrITS data. Our results show that monophyly of the genus Litsea is supported only for section Litsea. As a genus, Litsea was shown to be polyphyletic. The genera Actinodaphne and Neolitsea were resolved as monophyletic groups in all analyses. They were also shown to be sisters and closer to the genus Lindera than to the genus Litsea. Our results also revealed that the genus Lindera is not a monophyletic group.  相似文献   

12.
Anagrus epos Girault (Hymenoptera: Mymaridae) is a candidate for a classical biological control program targeting the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), in California. Because mass production of GWSS is expensive and labor-intensive, a factitious host that is more economical to produce is desirable to mass produce A. epos for colonization and augmentation efforts. Here, we report the results of host specificity tests and potential rearing techniques for A. epos under laboratory conditions. Females discriminated and oviposited into eggs of seven cicadellid species: H. vitripennis, Circulifer tenellus (Baker), Erythroneura variabilis Beamer, Amblysellus grex (Oman), Graphocephala atropunctata (Signoret), Macrosteles severini Hamilton, and H. liturata Ball, and two cerambycid species: Phoracantha recurva Newman and P. semipunctata (F.). Anagrus epos successfully completed development in the eggs of H. vitripennis, C. tenellus, E. variabilis, A. grex, G. atropunctata, M. severini, and H. liturata. The use of a factitious host and potential nontarget effects of this generalist parasitoid are discussed.  相似文献   

13.
The role of glutathione and other antioxidant systems in the response of Escherichia coli to acetamidophenol (paracetamol), rifampicin, and chloramphenicol was studied. The exposure of aerobically growing E. coli cells to acetamidophenol diminished the intracellular level of glutathione by 40% and the reduced-to-oxidized glutathione ratio in the cells by 50%, while it enhanced the expression of the antioxidant genes soxS and sodA by 2.7 and 1.8 times, respectively. Glutathione-deficient cells were more susceptible to acetamidophenol than were normal cells. All this suggests that acetamidophenol induces a mild oxidative stress in E. coli cells. The oxidative stress induced by rifampicin was still less pronounced, whereas chloramphenicol-treated E. coli cells exhibited no signs of oxidative stress at all.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 149–156.Original Russian Text Copyright © 2005 by Smirnova, Torkhova, Oktyabrskii  相似文献   

14.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

15.
16.
Using an Agrobacterium-mediated transformation method based on wounding cultured immature seeds with carborundum (600 mesh) in liquid, auxin-regulated tobacco glutathione S -transferase (GST) (NT107) constructs were used to transform Dianthus superbusL. A 663 bp DNA band was found in the transgenic plant genome by PCR analysis using NT107-1 and NT107-2 primers, and a Southern blot analysis showed that the DIG-labelled GST gene was hybridized to the expected amplified genomic DNA fragment from transgenic D. superbus. An overexpression of NT107 led to a twofold increase in GST-specific activity compared to the non-transgenic control plants, and the GST overexpression plants showed an enhanced acclimatization in the soil. To investigate whether an increased expression of GST could affect the resistance of photosynthesis to environmental stress, these plants were subjected to drought and various light intensities from 100 to 3000 mol m–2s–1. Copper accumulation and the translocation rate were also analysed in the transgenic lines, and the GST overexpression plants were found to synthesize phytochelatin (PC), which functions by sequestering and detoxifying excess copper ions.These two authors contributed equally to this work  相似文献   

17.
Parthenogenesis-inducing (PI) Wolbachia bacteria are reproductive parasites that cause infected (W +) female haplodiploid parasitoids to produce daughters without fertilization by males. Theoretically, PI Wolbachia infection should spread to fixation within Trichogramma populations as males are no longer required to produce female offspring. Infections in some naturally occurring Trichogramma populations are, however, maintained at frequencies ranging from 4 to 26%. Here we describe discrete equation models to examine if the PI Wolbachia infection in Trichogramma populations can be maintained at relatively low frequencies by mating regularity. Model outcomes suggest the probability of W + females mating could stabilize Wolbachia infection frequency at low levels in Trichogramma populations. The primary mechanism maintaining low-level PI Wolbachia infection in Trichogramma populations is reducing the survivorship from egg to adult in infected relative to uninfected females. The model successfully demonstrates that the relatively low PI Wolbachia infection frequency in host populations can be maintained by fertilization, or male rescue, of infected eggs, which avoids potentially hazardous gamete duplication that occurs during Wolbachia-induced parthenogenesis.  相似文献   

18.
This study was performed to elucidate the effects of Undaria pinnatifida fucoidan extract (UPFE) in preventing CCl4-induced oxidative stress. UPFE (100 mg/kg) was intraperitoneally administered to rats for 14 days. On day 15, CCl4 dissolved in olive oil (50% CCl4) was injected 12 h before they were anesthetized and dissected. To measure UPFE-mediated antioxidation, we examined the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in serum, as well as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver homogenates. CCl4 treatment markedly increased the levels of GOT, GPT, ALP, LDH, and MDA and significantly decreased levels of SOD, CAT, and GPx. UPFE pretreatment decreased levels of GOT, GPT, ALP, LDH, and MDA, by 62.8, 68.5, 41.9, 72.7, and 122%, respectively and increased those of SOD, CAT, and GPx by 111.1, 15.9, and 52.6%, respectively. These results showed that UPFE has antioxidant effects against CCl4-induced oxidative stress.  相似文献   

19.
Two different high-cell-density cultivation processes based on the mutant Saccharomyces cerevisiae GE-2 for simultaneous production of glutathione and ergosterol were investigated. Compared with keeping the ethanol volumetric concentration at a constant low level, feedback control of glucose feeding rate (F) by keeping the descending rate of ethanol volumetric concentration (ΔEt) between −0.1% and 0.15% per hour was much more efficient to achieve a high glutathione and ergosterol productivity. This bioprocess overcomes some disadvantages of traditional S. cerevisiae-based cultivation process, especially shortening cultivation period and making the cultivation process steady-going. A classical on or off controller was used to manipulate F to maintain ΔEt at its set point. The dry cell weight, glutathione yield and ergosterol yield reached 110.0 ± 2.6 g/l, 2,280 ± 76 mg/l, and 1,510 ± 28 mg/l in 32 h, respectively.  相似文献   

20.
We report here an in planta method to produce transgenic Brassica napus plants. The procedure included Agrobacterium-mediated inoculation of plants at various development stages along with a vacuum infiltration step. The flowering stage appeared to be the most receptive stage for transformation and production of transgenic plants. In some cases, the flowering stage was induced either by cold treatment or by high density planting. Molecular and genetic analysis revealed that single and multiple copy events were generated and that the transgenes were transmitted to the T1 and T2 progeny in a Mendelian fashion.Abbreviations AFP Adult flowering plants - ELISA Enzyme linked immunosorbent assay - GS Germinating seedlings - GUS -Glucuronidase - ISFP Induced small flowering plants - MS Murashige and Skoog - PPO Protoporphyrinogen oxidase - TE Tris-EDTA buffer - YEP Yeast extract-peptone mediumCommunicated by W.A. Parrott  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号