首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A revised synthesis of 10-methyl-9-[Nβ-(6-aminohexanoyl)-β-aminopropylamino]acridinium-Sepharose 2B is presented. Conditions for the individual purification of either 11 S (globular) or 18 S plus 14 S (asymmetric) acetylcholinesterase are described and the selective purification of either 11 S or 18 S plus 14 S enzyme from mixtures of the species is shown to be possible. The mechanism resulting in selective purification is discussed and the postulate that multiple-site interaction takes place between enzyme and immobilized ligand is presented.  相似文献   

2.
Positional isomers of mono-unsaturated 18:1-ACP have been used as substrates for stearoyl-acyl carrier protein delta9 desaturase to test whether a C-H bond abstraction from either the C-9 or C-10 position could lead to rearranged products diagnostic for the production of an allylic radical intermediate. The reconstituted enzyme complex was able to desaturate trans-delta11-18:1-ACP and trans-delta7-18:1-ACP, but not trans-delta9-18:1-ACP, or any of the corresponding cis-isomers. Enzymatic desaturation of trans-delta11-18:1-ACP gave a single product, cis-delta9,trans-delta11-18:2-ACP, as characterized by gas chromatography-electron ionization mass spectrometry of the molecular ions, the fragmentation products of pyrrolidide and 4,4-dimethyloxazoline derivatives, and by comparison of chromatographic retention times with authentic standards. Reaction of trans-delta7-18:1-ACP gave two enzymic products, trans-delta7,cis-delta9-18:2 (approximately 80%) and trans-delta7,cis-delta11-18:2 (approximately 20%). The major product was likely formed in a reaction identical to that of 18:0-ACP desaturation, while the minor product was likely formed by alternative placement of the C-10 and C-11 positions of the substrate analog in a cis configuration relative to the diiron oxidant. Since none of the products observed are indicative of rearrangements originating with an allylic radical, a discussion of the origins and possible implications of these results is presented.  相似文献   

3.
The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  相似文献   

4.
Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of trans-9,cis-11-18:2, cis-9,cis-11-18:2, and cis-10,cis-12-18:2. Mass spectrometry indicated an increase in the n+1 isotopomers of RA and other 9,11-CLA isomers, as a result of labeling at C-13, whereas 10,12 isomers contained minimal enrichment. In pure culture, Butyrivibrio fibrisolvens and Clostridium proteoclasticum produced mostly RA with minor amounts of other 9,11 isomers, all labeled at C-13. Increasing the deuterium enrichment in water led to an isotope effect, whereby (1)H was incorporated in preference to (2)H. In contrast, the type strain and a ruminal isolate of Propionibacterium acnes produced trans-10,cis-12-18:2 and other 10,12 isomers that were minimally labeled. Incubations with ruminal digesta provided no support for ricinoleic acid (12-OH,cis-9-18:1) as an intermediate of RA synthesis. We conclude that geometric isomers of 10,12-CLA are synthesized by a mechanism that differs from the synthesis of 9,11 isomers, the latter possibly initiated by hydrogen abstraction on C-11 catalyzed by a radical intermediate enzyme.  相似文献   

5.
The octacosapeptide sequence [Tyr18] pro-ocytocin/neurophysin (1-18)NH2 [pro-OT/Np(1-18)NH2] was synthesized and used as substrate to detect endoprotease(s) possibly involved in the processing of this precursor in bovine hypothalamo-neurohypophyseal tract. An endopeptidase (58 Kda) was detected in Lysates made from highly purified neurosecretory granules. This protease which cleaves the peptide bond on the carboxyl side of the Lys-Arg doublet, and no single basic residue, generates both OT-Gly10-Lys11-Arg12+Ala13-Val-Leu-Asp-Leu-Tyr18 (NH2) from the octacosapeptide substrate. In addition, a carboxypeptidase B-like activity converting OT-Gly10-Lys11-Arg12 into OT-Gly10 was detected in the same granule Lysates. It is hypothesized that a combination of these endoprotease and carboxypeptidase B-like activities together with the amidating enzyme of secretory granules might participate in the cleavage and processing of pro-OT/Np in vivo.  相似文献   

6.
Variation of K+-p-NPP-ase of human ghosts under the action of ouabain (10(-11)-10(-3) M) has been studied. In human ghosts the activity of ouabain-sensitive K+-p-NPP-ase has been found to make up 65% of the total enzyme activity. The activity of ouabain-sensitive K+-p-NPP-ase reaches a maximum level at pH 7.6-8.0. A decrease in the activity of this enzyme caused by ouabain is of two-phase character. In the range of ouabain concentration from 10(-10) M to 10(-6) M and from 10(-5) M to 10(-3) M the enzyme activity lowers significantly; in the range of 10(-7) M to 10(-5) M it reaches the plato. Two types of the enzyme are assumed to exist differing by 4-5 orders of magnitude in their sensitivity to ouabain, inhibitor affinity constants and Michaelis constants.  相似文献   

7.
A simple mathematical model for studying mechanism-based inhibitors (MBIs) is presented. The mathematical equations are deduced for an experimental protocol consisting of a first incubation of the enzyme in the presence of MBI followed by a washing protocol to eliminate free MBI. Finally enzyme activity (initial velocity) is measured with specific substrate. The representation of the final equation obtained is a straight line, and the MBI-specific association constant of velocity (k) can be calculated from its slope. The mathematical model was then challenged with the effect of 18-ethynyl-11-deoxycorticosterone (18-EtDOC) as an MBI on aldosterone biosynthesis from 11-deoxycorticosterone (DOC) in rat adrenal mitochondria. The last step of the mitochondrial biosynthesis of aldosterone consists of the conversion of DOC into corticosterone (B) or 18-hydroxy-11-deoxycorticosterone (18-OHDOC), and both steroids can then be transformed into aldosterone. The k (mM(-1) x min(-1)) values obtained for 18-EtDOC were: 451 +/- 36 for DOC to aldosterone; 177 +/- 16 for B to aldosterone; 175 +/- 15 for 18-OHDOC to aldosterone; and 2.7 +/- 0.2 for DOC to B. These results show that this MBI practically does not affect the metabolism of DOC to B in our enzyme preparation and that conversions of B and 18-OHDOC into aldosterone are catalyzed by the same enzyme.  相似文献   

8.
Human red cell membrane Ca2+-stimulatable, Mg2+-dependent adenosine triphosphatase (Ca2+-ATPase) activity and its response to thyroid hormone have been studied following exposure of membranes in vitro to specific long-chain fatty acids. Basal enzyme activity (no added thyroid hormone) was significantly decreased by additions of 10(-9)-10(-4) M-stearic (18:0) and oleic (18:1 cis-9) acids. Methyl oleate and elaidic (18:1 trans-9), palmitic (16:0) and lauric (12:0) acids at 10(-6) and 10(-4) M were not inhibitory, nor were arachidonic (20:4) and linolenic (18:3) acids. Myristic acid (14:0) was inhibitory only at 10(-4) M. Thus, chain length of 18 carbon atoms and anionic charge were the principal determinants of inhibitory activity. Introduction of a cis-9 double bond (oleic acid) did not alter the inhibitory activity of the 18-carbon moiety (stearic acid), but the trans-9 elaidic acid did not cause enzyme inhibition. While the predominant effect of fatty acids on erythrocyte Ca2+-ATPase in situ is inhibition of basal activity, elaidic, linoleic (18:2) and palmitoleic (16:1) acids at 10(-6) and 10(-4) M stimulated the enzyme. Methyl elaidate was not stimulatory. These structure-activity relationships differ from those described for fatty acids and purified red cell Ca2+-ATPase reconstituted in liposomes. Thyroid hormone stimulation of Ca2+-ATPase was significantly decreased by stearic and oleic acids (10(-9)-10(-4) M), but also by elaidic, linoleic, palmitoleic and myristic acids. Arachidonic, palmitic and lauric acids were ineffective, as were the methyl esters of oleic and elaidic acids. Thus, inhibition of the iodothyronine effect on Ca2+-ATPase by fatty acids has similar, but not identical, structure-activity relationships to those for basal enzyme activity. To examine mechanisms for these fatty acid effects, we studied the action of oleic and stearic acids on responsiveness of the enzyme to purified calmodulin, the Ca2+-binding activator protein for Ca2+-ATPase. Oleic and stearic acids (10(-9)-10(-4) M) progressively inhibited, but did not abolish, enzyme stimulation by calmodulin (10(-9) M). Double-reciprocal analysis of the effect of oleic acid on calmodulin stimulation indicated noncompetitive inhibition. Addition of calmodulin to membranes in the presence of equimolar oleic acid restored basal enzyme activity. Oleic acid also reduced 125I-calmodulin binding to membranes, but had no effect on the binding of [125I]T4 by ghosts. The mechanism of the decrease by long chain fatty acids of Ca2+-ATPase activity in situ in human red cell ghosts thus is calmodulin-dependent and involves reduction in membrane binding of calmodulin.  相似文献   

9.
We have examined the fatty acid substrate specificity of arachidonoyl-CoA synthetase from human platelet membranes. A variety of positional isomers and chain-length analogs of arachidonic acid [20:4(5, 8, 11, 14)] were synthesized, and assayed for their ability to inhibit arachidonoyl-CoA formation or to serve as substrates for the synthetase. The chain-length specificity of the synthetase for delta 8,11,14 trienoic fatty acids was C19 greater than C18 = C20 much greater than C21 greater C22. Inhibition activity by positional isomers of arachidonate was 20:4(5, 8, 11, 14) approximately equal to 20:4(6, 9, 12, 15) = 20:4(7, 10, 13, 16) much greater than 20:4(4, 7, 10, 13), however, Vmax for arachidonate was greater than that for 20:4(6, 9, 12, 15). The enzyme apparently "counts" double bonds from the carboxyl terminus. As counted from the methyl terminus we found that several n-6,-9,-12 fatty acids were ineffective as inhibitors [18:3(6, 9, 12); 19:4)4, 7, 10, 13); 21:3(9, 12, 15)], whereas all methylene-interrupted tri- and tetraenoic fatty acids which contained delta 8 and delta 11 double bonds were potent inhibitors. The delta 11 double bond was best associated with optimal inhibition: 20:3(5, 11, 14) had a lower Ki than 20:3(5, 8, 14). 13-Methyl-20:3(8, 11, 14) did not inhibit the enzyme. Partially purified enzyme from calf brain, depleted of nonspecific long-chain acyl-CoA synthetase, exhibited the same fatty acid specificity as crude platelet enzyme.  相似文献   

10.
A biosensor based on the enzyme-catalysed dissolution of biodegradable polymer films has been developed. Three polymer-enzyme systems were investigated for use in the sensor: a poly(ester amide), which is degraded by the proteolytic enzyme alpha-chymotrypsin; a dextran hydrogel, which is degraded by dextranase; and poly(trimethylene) succinate, which is degraded by a lipase. Dissolution of the polymer films was monitored by Surface Plasmon Resonance (SPR). The rate of degradation was directly related to enzyme concentration for each polymer/enzyme couple. The poly(ester amide)/alpha-chymotrypsin couple proved to be the most sensitive over a concentration range from 4 x 10(-11) to 4 x 10(-7) mol l(-1) of enzyme. The rate of degradation was shown to be independent of the thickness of the poly(ester amide) films. The dextran hydrogel/dextranase couple was less sensitive than the poly(ester amide)/alpha-chymotrypsin couple but showed greater degradation rates at low enzyme concentrations. Enzyme concentrations as low as 2 x 10(-11) mol l(-1) were detected in less than 20 min. Potential fields of application of such a sensor system are the detection of enzyme concentrations and the construction of disposable enzyme based immunosensors, which employ the polymer-degrading enzyme as an enzyme label.  相似文献   

11.
In these studies our goal was to solubilize the microsomal enzyme, 11 beta-hydroxysteroid dehydrogenase (11-HSD) as the first step in its purification. Enzyme was extracted from rat liver microsomes with representative detergents (Zwittergents, Tritons, modified sterols). Oxidation-reduction (O-R) ratios of extracts varied with detergent used and ranged from 0.18 (CHAPS) to 3.8 (Zwittergent 3-14) relative to a ratio of 1.7 in intact microsomes. All detergents solubilized 11-HSD using lack of sedimentation during high speed centrifugation as criterion. With Triton DF-18 and Triton X-100, optimum extraction of 11-HSD occurred in the detergent-protein ratio range of 0.1 to 0.2 O-R ratios decreased with increased Triton X-100, but were constant as Triton DF-18 was varied. The pH optimum of enzyme extraction was 9 at a detergent-protein ratio of 0.05 and 7.5-8.0 at a ratio of 0.2. Sodium chloride increased enzyme extraction by detergents; in the absence of detergent, salt extracted protein, but not enzyme. In aqueous solution at 0 degrees C or -15 degrees C, microsomal 11-oxidation activity rose within 24 h, then decreased; reductase activity consistently decreased. Oxidation and reduction activities were inversely related in the microsomal bound enzyme. No relationship between these activities appeared in detergent-solubilized enzymes. Possible mechanisms to account for the unexpected behavior of this enzyme are discussed.  相似文献   

12.
Mitochondrial proteinase isolated from secretory cells of the mammary gland of lactating rats able to hydrolyze 125I-labeled and native prolactin (PRL) has been studied. The enzyme represents a serine proteinase and is localized in the inner mitochondrial membrane. The molecular mass of the enzyme is 17-18 kDa, pH optimum is at 8.0-9.0. Partial purification of the enzyme has been carried out. The Km constant for 125I-PRL is equal to 10(-6) M, that for 2% hemoglobin is 1.2 x 10(-4) M. Analysis of products of rat and ovine PRL hydrolysis by proteinase using high performance liquid chromatography and PAAG electrophoresis revealed the formation of large-size fragments of the hormone. A possible role of proteinase in the mechanism of PRL action on mammary gland tissues is discussed.  相似文献   

13.
Lactating mice were fed trans-vaccenic acid (trans 11-18:1, TVA) to assess desaturation of TVA to cis9,trans11-conjugated linoleic acid (9/11CLA). Diets contained 30 g x kg(-1) 18:2n-6 (LA) or 20 g LA plus 10 g 18:0 (SA), TVA, or a CLA mixture (MCLA). Compared with SA, feeding TVA increased 9/11CLA concentrations in blood plasma phospholipid, triglyceride, and free fatty acid fractions. However, concentrations of 9/11CLA in plasma fractions were greater when MCLA was fed compared with SA or TVA. No 9/11CLA was detected in liver of mice fed SA, and it was only 1 mg x g(-1) of total fatty acids in the carcass. In contrast, 9/11CLA content of liver (5 mg x g(-1)) and carcass (6 mg x g(-1)) of mice fed TVA was similar to liver (5 mg x g(-1)) and carcass (7 mg x g(-1)) of mice fed MCLA. Mammary tissue of SA-fed mice had no detectable 9/11 CLA, compared with 5 or 14 mg x g(-1) for TVA or MCLA-fed mice. Stearoyl-CoA desaturase activity in mammary tissue from TVA-fed dams was 14% greater compared with SA. Activity of this enzyme in liver tissue was similar among treatments. In pups nursing TVA-fed dams, 9/1 ICLA accounted for 3 mg x g(-1) in liver but no 9/11CLA was detected in the carcass. In pups nursing MCLA-fed dams, however, 9/11CLA accounted for 8 and 6 mg x g(-1) in liver and carcass. Results indicated TVA desaturation enhanced 9/11CLA in tissues and milk fat.  相似文献   

14.
Replacing several serine and threonine residues on the Ser/Thr surface of the xylanase from Aspergillus niger BCC14405 with four and five arginines effectively increases the thermostability of the enzyme. The modified enzymes showed 80% of maximal activity after incubating in xylan substrate for 2h at 50 degrees C compared to only 15% activity for wild-type enzyme. The half-life of the mutated enzymes increased to 257+/-16 and 285+/-10 min for the four- and five-arginine mutants, respectively, compared to 14+/-1 min for the wild-type enzyme. Thus, the arginine substitutions effectively increase stability by 18-20-fold. Kinetic parameters of the four-arginine-substitution enzyme were maintained at the level of the wild-type enzyme with the K(m) and V(max) values of 8.3+/-0.1 mgml(-1) and 9556+/-66 (n=3) U mg(-1) protein, respectively. The five-arginine-substitution enzyme showed only slight alteration in K(m) and V(max) with K(m) of 11.7+/-1.7 mgml(-1) and V(max) of 8502+/-65 Umg(-1) protein, indicating lower substrate affinity and catalytic rate. Our study demonstrated that properly introduced arginine residues on the Ser/Thr surface of xylanase family 11 might be very effective in improvement of enzyme thermostability.  相似文献   

15.
The synthesis of a series of 5-phenyl substituted 1-methyl-2-pyridones (I) and 4'-substituted biphenyl-4-carboxylic acids (II) as novel A-C ring steroidomimetic inhibitors of 5alpha-reductase (5alphaR) is described. Compounds 1-4 (I) were synthesized by palladium catalyzed cross coupling (Ishikura) reaction between diethyl(3-pyridyl)borane and aryl halides (1b-4b) followed by alpha-oxidation with sodium ferrocyanate of the 1-methyl-pyridinium salt. Inhibitors II (5-18) were obtained either by two successive Friedel-Crafts acylations from biphenyl (5a-10a) followed by saponification to yield the corresponding carboxylic acids (5-10) or by Suzuki cross coupling reaction to give the 4'-substituted biphenyl-4-carbaldehydes 11a-18a. The latter compounds were subjected to a Lindgren oxidation to yield compounds 11-18. The compounds were tested for inhibitory activity toward human and rat 5alphaR1 and 2. The test compounds inhibited 5alphaR, showing a broad range of inhibitory potencies. The best compound in series I was the N-(dicyclohexyl)-4-(1,2-dihydro-1-methyl-2-oxopyrid-5-yl)benzamide 4 exhibiting an IC(50) value for the human type 2 enzyme of 10 microM. In series II, the most active compound toward human type 2 isozyme was the 4'-(dicyclohexyl)acetyl-4-biphenyl carboxylic acid (10; IC(50)=220nM). Both series showed only marginal activity toward the human type 1 isozyme. In conclusion, the biphenyl carboxylic acids (II) are more appropriate for 5alphaR inhibition than the 5-phenyl-1-methyl-2-pyridones (I). Especially the 4'-carbonyl compounds 5-10 represent new lead structures for the development of novel human type 2 inhibitors.  相似文献   

16.
11R-Lipoxygenase (11R-LOX) activity has been detected in several marine invertebrates, and here we report the first cloning and expression of the enzyme. The cDNA encoding a protein of 77kDa was isolated by RT-PCR from the soft coral Gersemia fruticosa and expressed in Escherichia coli. Incubations of recombinant enzyme with arachidonic acid yielded a single product, identified by RP-HPLC, GC-MS, and chiral phase-HPLC as 11R-hydroperoxyeicosatetraenoic acid. Other C18, C20, and C22 substrates are also oxygenated, preferentially at the omega10 position. Significantly, both Ca(2+)-ions and a membrane fraction are required for catalytic activity. Calcium effects translocation of the soluble 11R-LOX to the membrane and this association is reversible by Ca(2+) chelation. The enzyme sequence contains some conserved amino acids implicated in calcium activation of mammalian 5-LOX, and with its obligate requirement for membrane interaction the 11R-LOX may thus provide a new model for further analysis of this aspect of lipoxygenase activation.  相似文献   

17.
S Ali  H N Lin  R Bittman  C H Huang 《Biochemistry》1989,28(2):522-528
High-resolution differential scanning calorimetry (DSC) has been used to study the aqueous dispersions of mixed-chain phosphatidylcholines prepared from colyophilized mixtures of C(18):C(11:1 delta 10) PC/C(18):C(10)PC and C(18):C(11:1 delta 10) PC/C(18):C(11)PC of various molar ratios. These mixed-chain phospholipids are characterized by a marked disparity in their acyl-chain lengths; however, the sn-1 acyl chain in the fully extended conformation is about twice as long as the sn-2 acyl chain. Their thermotropic behavior was determined, and the phase diagrams of these two mixtures were constructed from the calorimetric data. Results indicate that C(18):C(11:1 delta 10)PC/C(18):C(10)PC and C(18):C-(11:1 delta 10)PC/C(18):C(11)PC are miscible in all proportions with a near-ideal behavior of mixing in the gel and liquid-crystalline phases. Equimolar mixtures of diC(14)PC/C(18):C(11:1 delta 10)PC, diC(14)PC/C(18):C(10)PC, and diC(14)PC/C(18):C(11)PC have also been studied by DSC. These phosphatidylcholines in the 1:1 mixture differ in Tm by less than 11 degrees C; however, they exhibit gel-phase immiscibility in the plane of the bilayer. Taken together, these studies suggest that C(18):C(11)PC and C(18):C(11:1 delta 10)PC are packed similarly to C(18):C(10)PC in excess water as mixed interdigitated bilayers, at T less than Tm, which transform into partially interdigitated bilayers when heated above Tm.  相似文献   

18.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

19.
Yeoh HH  Badger MR  Watson L 《Plant physiology》1981,67(6):1151-1155
Studies of ribulose-1,5-bisphosphate (RuBP) carboxylase from taxonomically diverse plants show that the enzyme from C(3) and crassulacean acid metabolism pathway species exhibits lower K(m)(CO(2)) values (12-25 micromolar) than does that from C(4) species (28-34 micromolar). RuBP carboxylase from aquatic angiosperms, an aquatic bryophyte, fresh water and marine algae has yielded consistently high K(m)(CO(2)) values (30-70 micromolar), similar in range to that of the enzyme from C(4) terrestrial plants. This variation in K(m)(CO(2)) is discussed in relation to the correlation between the existence of CO(2)-concentrating mechanisms for photosynthesis and the affinity of the enzyme for CO(2). The K(m)(RuBP) of the enzyme from various sources ranges from 10 to 136 micromolar; mean +/- sd = 36 +/- 20 micromolar. This variation in K(m)(RuBP) does not correlate with different photosynthetic pathways, but shows taxonomic patterns. Among the dicotyledons, the enzyme from crassinucellate species exhibits lower K(m)(RuBP) (18 +/- 4 micromolar) than does that from tenuinucellate species (25 +/- 7 micromolar). Among the Poaceae, RuBP carboxylase from Triticeae, chloridoids, andropogonoids, Microlaena, and Tetrarrhena has yielded lower K(m)(RuBP) values (29 +/- 11 micromolar) than has that from other members of the grass family (46 +/- 10 micromolar).  相似文献   

20.
Thirty stable hybridoma cell lines secreting monoclonal antibodies specific for Japanese radish acid phosphatase (EC 3.1.3.2) were obtained. These antibodies were inhibitory or stimulatory or had no effect on the enzyme activity. Four antibodies (IgG1 subclass) among them, designated MAb-11, MAb-18, MAb-20, and MAb-30, were purified and partially characterized. MAb-11, MAb-18, and MAb-20 inhibited more than 80% of the enzyme activity and appeared to act as noncompetitive inhibitors. Competitive inhibition assay indicated that MAb-18 and MAb-20 were classified into the same group and MAb-11 into another group. MAb-20 had an inhibitory effect on acid phosphatases from some vegetable and meat sources. The Fab fragment prepared by limited proteolysis of MAb-20 with papain also inhibited the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号