首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The morphology and distribution of the sensory neurones of the pudendal nerve within the spinal ganglia of rats were investigated by use of horseradish peroxidase (HRP). The labelling was visualized in diaminobenzidine (DAB) or tetramethyl-benzidine (TMB)-stained sections. Injection of HRP directly into the pudendal nerve labelled perikarya predominantly in the sixth lumbar DRG (L6). Following injection of HRP into the scrotal skin, however, additional cells were labelled in L5 and SI. Labelling was invariably unilateral. Approximately equal numbers of small (<30 m) and large neurones (>40 m) were labelled following subcutaneous injections although injections into the nerve marked twice as many small cells as large cells. This suggests that, in the rat, most of the small-diameter fibres within the pudendal nerve ascend through L6. Although a cluster of neurones was observed in one experiment, the remaining 25 experiments did not reveal any somatotopic arrangement since the labelled perikarya were distributed evenly throughout the ganglion. Similar numbers of retrogradely labelled neurones (somatopetal transport of the tracer) were observed in both DAB- and TMB-stained sections, although TMB allowed the demonstration of anterograde (somatofugal) HRP transport by terminal labelling in the superficial laminae of the lumbar spinal cord, extending into laminae II–IV.Partially supported by grants from the DFG to HWK (Ko 758/1)  相似文献   

2.
Summary The dynamics of horseradish peroxidase (HRP) transport in primary sensory neurons were studied in rats by demonstration of the reaction product in spinal nerves, spinal ganglia, dorsal roots and in the spinal cord at different survival times after application of the enzyme to the transected sciatic nerve and to the spinal cord. Using tetramethylbenzidine as the chromogen according to Mesulam (1978), transganglionic transport of HRP was shown in both the disto-proximal direction after peripheral application, and proximo-distal direction after central application. Significant differences in staining intensity between the central and peripheral processes of primary sensory neurons were found after all survival times used in this study. After peripheral application the number of labeled axons and the staining intensity were higher in spinal nerves than in dorsal roots; an inverse situation occurred after central application. These differences as well as the time sequences in staining of different parts of primary sensory neurons suggest that HRP applied to a peripheral nerve and to the spinal cord, respectively, enters the perikarya of spinal ganglion cells in any case before continuing its movement in a cellulifugal direction. Lysosomal degradation of the major portion of the applied HRP is supposed. However, in the post-perikaryal portion of a considerable number of neurons HRP-transport still occurs to a varying extent, thus resulting in labeling of nerve endings. In some neurons a post-perikaryal transport could not be detected light microscopically. The transport rates differ: the calculated transport rate of disto-proximal, cellulipetal movement in the fastest transporting neurons was 7.5 mm/h, that of the disto-proximal cellulifugal movement 2.5 to 3 mm/h.This work was partly supported by the Hartmann Müller-Stiftung I want to thank Miss Regula Eichholzer for the technical assistance  相似文献   

3.
本研究应用乙醛酸诱发儿茶酚胺(CA)荧光技术观察大鼠肾上腺素(NA)能神经在脊神经节内的分布;并应用HRP顺、逆行追踪技术对脊神经节内NA能神经纤维的起源及其与脊神经节神经元的关系进行了探讨。荧光组织化学观察发现、有些神经节神经元胞体周围分布有带膨体的NA能神经末梢;有的紧密围绕脊神经节细胞——卫星细胞复合体。颈上交感神经节内注射霍乱毒素B亚单位结合HRP(CB┐HRP),在同侧C3~6节段脊神经节内可见标记的点状纤维末梢紧邻于节细胞旁。T11~L2节段脊神经节内注射HRP后,在同侧椎旁交感链(T9~L1)内可见标记的交感节后神经元胞体。上述实验结果表明,交感节后神经元发出节后纤维可直接到达脊神经节内,与节细胞发生接触。本研究提示、交感神经在脊神经节水平可能参与躯体初级传入信息的调制  相似文献   

4.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

5.
Summary Earlier studies using Golgi silver impregnations from the labellar sensilla of adult Drosophila melanogaster revealed seven types of sensory axons projecting into the suboesophageal ganglion of the brain. These sensory terminals were designated as coiled fibres (type-I), shrubby fibres (type-II), ipsilateral ventral fibres (type-III), ipsilateral dorsal fibres (type-IV), contralateral ventral fibres (type-V), contralateral dorsal fibres (type-VI), and central fibres (type-VII). The present study identifies the projections of sensory neurons present in a single labellar taste-sensillum, using the neuronal marker horseradish peroxidase (HRP). Although the taste sensillum in question has five neurons, in a given experiment only one or at the most two neurons are labelled. The type of neuron labelled was usually specific to the stimulant solute (sucrose, sodium chloride or potassium chloride) present in the HRP solution. Although type-II fibres get labelled most of the time, irrespective of the stimulant present in HRP solution, type-IV fibres are labelled when attractants (0.1 M sucrose or 0.1 M sodium chloride) are used as stimulants in HRP solution. Type-VI fibres are labelled when the stimulant is 0.1 M potassium chloride, a repellent. HRP dissolved in distilled water revealed type-I coiled fibres. Besides revealing projections of sensillar neurons to the brain the present technique also inferred their possible function. Incubation of whole-brain tissue with 0.04% 3,3-diaminobenzidine tetrahydrochloride in presence of 0.06% hydrogen peroxide suggested that the glomerular organization is also present in the taste-sensory region as it is in olfactory neuropile.  相似文献   

6.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

7.
Summary Somatostatin-like immunoreactivity was localized in nerve cell bodies and nerve terminals in the cat coeliac ganglion. Two types of somatostatin-immunoreactive cell bodies were revealed, the first being large (diameter 35 m), numerous and weakly labelled, where—as the second was considerably smaller (diameter 10.4 m), sparsely distributed and heavily stained. The immunoreactive nerve terminals were in synaptic contact with many immunonegative large neurons and dendrites. However, in a few cases, somatostatin-immunoreactive nerve terminals could also be observed on the surface of lightly stained neurons. Transection of vagal or mesenteric nerve failed to affect the distribution or density of somatostatin-like immunoreactive nerve terminals. These results demonstrate the existence of a synaptic input to the principal neurons of the coeliac ganglion of the cat by somatostatin-containing nerve terminals and suggest that this peptide may act as a neuromodulator or neurotransmitter. It is proposed that somatostatin-positive neurons provide intrinsic projections to other somatostatin-positive and to somatostatin-negative neurons throughout the coeliac ganglion, thereby creating a complex interneuronal system.  相似文献   

8.
Motoneurons were labelled by retrograde axonal transport of HRP applied to transected spinal nerves in 9-11-day chick embryos in the in vitro spinal cord preparation. Recurrent motor axon collaterals were revealed in 17 of 48 motor axons which could be followed in the edge regions of labelled motoneuronal pools. The results, coupled with author's earlier electrophysiological data, provide further evidence for the presence of the Renshaw inhibition in the avian spinal cord.  相似文献   

9.
Some properties of the axonal transport of proteins and glycoproteins along the optic pathway of chick embryos and newly hatched chicks were studied by labelling retinal ganglion cells with 3H-proline or 3H-fucose. A study of the effects of colchicine (COL) and vinblastine (VLB) on embryonic axonal transport was also carried out. Marked changes in the efficiency of axonal transport were found throughout development. In particular, the fraction of retinal ganglion cell proteins which is rapidly exported toward tectal terminals increases during embryonic life but steadily decreases after hatching. Glycoprotein transport behaves similarly except that its efficiency is relatively higher at stages when critical events of synaptic maturation in the tectum are reported to occur. Embryonic axonal transport is blocked by COL and VLB at very low intravitreal concentrations. Retinal protein synthesis and the morphology of ganglion cells are profoundly altered by the drugs: in general, COL and VLB effects were much more marked in embryonic than in mature neurons. An analysis of the time course of rapid transport along embryonic optic axons was carried out by reducing the efflux of labelled proteins from the eye by giving VLB intravitreally 2 h after the pulse. It revealed some peculiar features in the retino-tectal migration of glycoproteins and confirmed their progressive accumulation within terminals as previously described by radioautography. These results suggest that axonal transport of proteins during embryonic life undergoes changes in parallel with synaptic maturation. It may thus be considered as one of the factors controlling the genesis of neuronal networks.  相似文献   

10.
—The redistribution of rapidly migrating [3H]leucine-labelled proteins was studied using double ligatures applied to the vagus nerve and single ligatures, applied to the hypoglossal nerves. Rapidly migrating proteins accumulating for 16 h proximal to a distal ligature of the cervical vagus redistributed to give a retrograde accumulation distal to a second ligature. Within 6 h a substantial redistribution occurred indicating a rapid retrograde transport. After 21 h there was a further accumulation with 70 per cent of the labelled material accumulating at the distal end of the isolated nerve segment and 16 per cent accumulating at the proximal end. It was shown that about a half of the retrograde accumulation was dependent on the distal accumulation zone. Rapidly migrating proteins accumulated distal to a ligature applied to the hypoglossal nerve 16 h after labelling of the nerve cell bodies indicating that a rapid retrograde transport of labelled macromolecules occurs from the peripheral parts of the nerve in the tongue. Labelled proteins accumulated proximal to ligatures and transections of both the hypoglossal and vagus nerve when applied 16 h after labelling of the nerve cell bodies, indicating the presence of axonal proteins, migrating at a rate of transport intermediate to that of rapidly and slowly migrating proteins.  相似文献   

11.

Background

RhoA and Rho kinase inhibitors overcome the inhibition of axonal regeneration posed by central nervous system (CNS) substrates.

Methods

To investigate if inhibition of the Rho pathway augments the neurite extension that naturally occurs in the peripheral nervous system (PNS) following nerve damage, dorsal root ganglion neurons and Schwann cell co-cultures were incubated with culture medium, C3 fusion toxin, and the Rho kinase (ROCK) inhibitors Y27632 and H1152. The longest neurite per neuron were measured and compared. Incubation with Y27632 and H1152 resulted in significantly longer neurites than controls when the neurons were in contact with Schwann cells. When separated by a porous P.E.T. membrane, only the group incubated with H1152 developed significantly longer neurites. This work demonstrates that Rho kinase inhibition augments neurite elongation in the presence of contact with a PNS-like substrate.  相似文献   

12.
The end-structure of afferent axons chronically severed in the rat sciatic nerve or dorsal column (DC) was visualized by centrifugal transport of horseradish peroxidase (HRP) or wheatgerm agglutinin conjugated to HRP (WGA:HRP) injected into the L4 or L5 dorsal root ganglion. Nerve regeneration was prevented and neuroma formation encouraged by tightly ligating the cut nerve end. For the first few weeks postoperative, the time during which afferents trapped in a nerve-end neuroma generate their most intense ectopic impulse barrage, the developing neuroma was dominated by swollen terminal end-bulbs. There was some axonal dying-back, retrograde fiber growth, and terminal sprouting, but little preterminal branching. The rich tangle of fine preterminal branches usually thought of in relation to nerve-end neuromas did not elaborate until several months postoperative, a time when the neuroma is relatively quiescent electrically. Afferents cut in the DC, which never develop dramatic ectopic electrical activity, showed morphological peculiarities similar to nerve-end neuromas during the early postoperative period, including retrograde fiber growth and minimal sprouting. They did not, however, go on to form luxuriant branches. These data provide preliminary clues as to the structure of the ectopic impulse-generating mechanism thought to underlie paresthesias and pain associated with peripheral nerve injury.  相似文献   

13.
Using fluorescent double labelling technique with one tracer applied to the greater splanchnic nerve and a second to the ventral or dorsal spinal nerve ramus at the T9 level, it was shown that two separate populations of sensory nerve cell bodies in the T9 dorsal root ganglion were projecting to the splanchnic nerve and spinal rami, respectively. Only two double labelled cells were detected. The results support the theory that spinal and/or supraspinal interactions and not dichotomizing sensory axons are responsible for referred pain.  相似文献   

14.
The end-structure of afferent axons chronically severed in the rat sciatic nerve or dorsal column (DC) was visualized by centrifugal transport of horseradish peroxidase (HRP) or wheatgerm agglutinin conjugated to HRP (WGA:HRP) injected into the L4 or L5 dorsal root ganglion. Nerve regeneration was prevented and neuroma formation encouraged by tightly ligating the cut nerve end. For the first few weeks postoperative, the time during which afferents trapped in a nerve-end neuroma generate their most intense ectopic impulse barrage, the developing neuroma was dominated by swollen terminal end-bulbs. There was some axonal dying-back, retrograde fiber growth, and terminal sprouting, but little preterminal branching. The rich tangle of fine preterminal branches usually thought of in relation to nerve-end neuromas did not elaborate until several months postoperative, a time when the neuroma is relatively quiescent electrically. Afferents cut in the DC, which never develop dramatic ectopic electrical activity, showed morphological peculiarities similar to nerve-end neuromas during the early postoperative period, including retrograde fiber growth and minimal sprouting. They did not, however, go on to form luxuriant branches. These data provide preliminary clues as to the structure of the ectopic impulse-generating mechanism thought to underlie paresthesias and pain associated with peripheral nerve injury.  相似文献   

15.
Summary Horseradish peroxidase (HRP) was introduced directly into the cerebral cortex of adult rats, which were allowed to survive for 60 min before perfusion fixation. After the tissue had been incubated to demonstrate HRP at the LM and EM levels, blocks of cortical tissue were taken at varying distances from the injection site. These eight blocks of tissue constituted a time sequence for HRP diffusion.Qualitative examination of the presynaptic terminals showed that the most commonly encountered profiles are the plain synaptic vesicles, many of which accumulate tracer. In some terminals labelled vesicles are lined-up in tubular fashion. Other profiles commonly labelled are coated vesicles, tubular and vacuolar cisternae, and plain and coated pinocytotic vesicles.Quantitative analyses based on the number of terminals containing labelled profiles demonstrate an early rise in the rate of labelling of both plain synaptic vesicles and coated vesicles, after which synaptic vesicle labelling rises slowly towards a plateau. By contrast, there is a late parallel increase in the rate of labelling of coated vesicles and cisternae. A more detailed analysis, based on the actual numbers of labelled and total profiles within each presynaptic terminal, highlight early and late periods of rapid labelling for plain synaptic vesicles, coated vesicles and cisternae. A further aspect of HRP incorporation studied, concerns its uptake into four delineated regions of the presynaptic terminal.Our data indicate that membrane uptake into the presynaptic terminal is accomplished mainly via coated vesicles, although plain synaptic vesicles may also be involved. Coated vesicles, in turn, appear to give rise directly to plain synaptic vesicles, with some coalescing to produce vacuolar cisternae. The latter are involved in a two-way interchange of membrane with tubular cisternae, plain synaptic vesicles and coated vesicles. An additional source of plain synaptic vesicles are the tubular cisternae. Exocytosis of plain synaptic vesicles constitutes the mechanism by which transmitter is released from the presynaptic terminal.Supported by the Nuffield Foundation. We are grateful to Mr. M. Austin for help with the photography  相似文献   

16.
腓肠肌内注射HRP后,用生物化学法测定坐骨神经、L_(4-6)节段背根和腹根神经的HRP含量。在戊巴比妥连续全身麻醉大鼠的HRP含量明显低于不麻醉的大鼠,而肌肉不活动(TTX中毒和切腱)大鼠神经组织中的HRP含量无甚变化。刺激神经不能改变麻醉大鼠的HRP含量。上述结果提示:除麻醉剂造成的肌肉不活动因素外,戊巴比妥对大鼠骨胳肌HRP的轴突摄取和逆行传送具有另外的抑制作用。已有研究报道:破伤风和单纯性疱疹病毒脑炎都是由于它们的毒素或病毒,通过外周神经摄取然后逆行传送到各级中枢而致病的。  相似文献   

17.
Abstract: Retrograde axonal transport of phospholipid was studied in rat sciatic motoneuron axons by placing collection crushes on the nerve at intervals after injection of [methyl-3H]choline into the lumbosacral spinal cord, and allowing labelled material undergoing anterograde or retrograde movement to accumulate adjacent to the collection crushes. Control experiments showed that the accumulations of label were not a result of local uptake of circulating precursor. The majority of the 3H label was associated with phosphatidylcholine. Accumulation of label at the distal collection crush, representing retrograde transport, was observed subsequent to the anterograde transport of phospholipid. In comparison with previous study on retrograde transport of protein, the following points were noted: (1) onset of retrograde transport occurred at approximately the same time after precursor injection (10–20 h) for both protein and phospholipid; (2) retrograde transport of lipids was more prolonged: maximum retrograde transport occurred later for phospholipid (30 h) than for protein (15–20 h), and declined to half-maximum between 49 and 99 h, compared to a corresponding value of 24–28 h for protein; (3) the proportion of total anterograde-transported activity subsequently undergoing retrograde transport was less in the case of phospholipid, at least over the time interval studied (up to 99 h after precursor injection). The similar times of onset of retrograde transport of phospholipid and protein support the concept of retrograde transport as a recycling mechanism returning to the cell body membrane fragments that were earlier transported into the axon. Coordinated retrograde transport of labelled protein and phospholipid components of the recycled membranes would be predicted. Differences between protein and phospholipid in the subsequent time course and amount of retrograde transport may reflect differences in axonal handling of protein and lipid. Both the more prolonged outflow of labelled lipids from cell body into axon and exchange with a distal pool of unlabelled phospholipid may account for the prolonged time course of retrograde transport of labelled lipid.  相似文献   

18.
Summary The dependence of anterograde axoplasmic transport on cytoskeletal components was investigated using microinjection of horseradish peroxidase (HRP) into the somata of chick dorsal root ganglion cells in vitro. Microinjected HRP was transported anterogradely in the neurites and their branches; this transport was disturbed by colchicine in a drug-dependent and time-dependent manner. Cytochalasin B, a drug that depolymerizes actin, did not inhibit the transport of HRP, despite the formation of local swellings in neurites. The microinjection of polyclonal antibodies directed against tubulin and monoclonal antibodies (mAbs) against 200-kDa neurofilaments disturbed the axoplasmic transport of co-injected HRP, which then exhibited an irregular and discontinuous distribution in the axonal branches. The transport of HRP became discontinuous after the injection of anti-tubulin antibodies and led to the formation of globular deposits of HRP. Polyclonal antibodies against actin and mAbs to 160-kDa and 68-kDa neurofilaments seemed to have no effect on the axoplasmic transport of co-injected HRP. Microinjection of antibodies against tubulin induced formation of perinuclear bundles consisting of cytoskeletal components. The transport of HRP thus appears to be regulated by an intact microtubular system and cross-linker components (200-kDa neurofilaments) of the cytoskeleton. Actin and most intermediate filament proteins do not seem to play an essential role in the transport of HRP.  相似文献   

19.
Summary Tritiated thymidine was administered to fertilized eggs of Chironomus tentans at the time of oviposition. Larvae hatching from these eggs were raised until the end of the 4th instar when they were dissected and their salivary glands squashed for autoradiography of the giant chromosomes. Good autoradiographs were obtained after 2 years exposure from preparations stored in plastic boxes.Three principal patterns of labelling were found: (1) single-strand labelling, where one or two chromosome pairs per nucleus show one single helical track of silver grains typically running from one end of the chromosome to the other; (2) two or four-strand labelling, where all chromosome pairs of a nucleus show 2 or 4 densely labelled tracks; and, (3), diffuse strand labelling where the level of labelling is generally low and the number of labelled strands per chromosome pair seems to be higher than 8. Approximately one half of all nuclei were found unlabelled. In 9 out of 70 chromosome pairs with single strand labelling the labelled strand begins at one end of the chromosome but ends interstitially.The labelled single strands must be intact mitotic half-chromatids (or crossover products of these) which received their label during DNA synthesis early in embryonic development, probably before blastoderm formation. A model of cell lineage involving selection against labelled nuclei accounts for the observed distribution of labelled single strands in our material. The occurrence of 2- and 4-strand labelling points to a smaller number of mitotic divisions preceding the formation of some portions of the salivary glands as contrasted with others. Cells showing this type of labelling have either not divided at all, or they are descendants of just one division, after the supply of tritiated thymidine was exhausted in early development. Our findings confirm the classical concept of polyteny.

Herrn Professor Dr. Hans Bauer zum 60. Geburtstag.  相似文献   

20.
Proteins labeled with [35S]methionine or [3H]leucine were generated in vitro in bullfrog dorsal root ganglia and their fast axonal transport in the spinal nerves was followed during a subsequent incubation period. Incubation of the ganglia in a medium where sucrose, choline chloride, or sodium isethionate replaced NaCl caused respectively an 88, a 37, or a 76% reduction in the quantity of proteins carried by the fast axonal transport system; no decrease in synthesis of labeled proteins was observed and protein transport followed the usual time course. Incubation of desheathed spinal nerves in a medium where sucrose replaced NaCl reduced by 67% the quantity of labeled proteins which were transported past the desheathed region. Although both the axons and the dorsal root ganglia exhibit the requirement for monovalent ions to maintain fast axonal transport, the possibility that the ionic requirements of the ganglia pertain to the somal portion of the nerve cell is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号