首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies suggested that Chinese hamster V79 cells possess two mechanisms for their mutual adhesion, Ca2+-dependent and Ca2+-independent ones. We could prepare cells with only the Ca2+-dependent mechanism intact by dispersing cell monolayers with trypsin (0.01%) containing Ca2+. In the present study, we found that cells dispersed with a very low concentration of trypsin (0.0001%) in the absence of Ca2+ retain only the Ca2+-independent mechanism intact. Fab fragments of antibodies directed against surface antigens of V79 cells inhibited the aggregation of V79 cells by the Ca2+-independent mechanism, but did not inhibit the aggregation of these cells by the Ca2+-dependent mechanism. These results suggest that the two mechanisms of cell adhesion are based on different cellular components. Molecules responsible for the Ca2+-independent adhesion mechanism are probably cell surface components, because they were released from cells by the treatment with 0.01% trypsin without losing their specific antigenicity. The presence of adhesion mechanisms similar to those in V79 cells was shown in neural retinal cells of chick embryos. It was assumed, therefore, that these mechanisms of cell adhesion are generally present among a variety of cell types.  相似文献   

2.
Antibodies were raised against neural retina cells prepared by dissociation in EGTA alone (E cells, Ca2+-independent aggregation), in trypsin + Ca2+ (TC cells, Ca2+-dependent aggregation), or in trypsin + EGTA (TE cells, nonadhesive). Anti-E-cell Fab selectively inhibited Ca2+-independent aggregation, anti-TC-cell Fab selectively inhibited Ca2+-dependent aggregation, and anti-TE-cell Fab inhibited neither. Fab from a fourth preparation, also raised against E cells, inhibited both Ca2+-independent and Ca2+-dependent aggregation but was separated by immunoadsorption into two fractions, one specific for each mode of aggregation. In cells which utilize both modes simultaneously (LTC cells), each was inhibited exclusively by the appropriate Fab. The immunological data presented here demonstrate the existence in the same cells of two distinct and functionally independent adhesion mechanisms, each responsible for one of the two modes of aggregation. The differing adhesive properties of retinal cells prepared by different procedures are explained by the presence, absence, or degree of activity of these two mechanisms, qualities regulated by the concentrations of trypsin and Ca2+ used in the tissue dissociation.  相似文献   

3.
《The Journal of cell biology》1988,107(6):2307-2317
Using a sensitive and quantitative adhesion assay, we have studied the initial stages of the intercellular adhesion of the C2 mouse myoblast line. After dissociation in low levels of trypsin in EDTA, C2 cells can rapidly reaggregate by Ca2+-independent mechanisms to form large multicellular aggregates. If cells are allowed to recover from dissociation by incubation in defined media, this adhesive system is augmented by a Ca2+-dependent mechanism with maximum recovery seen after 4 h incubation. The Ca2+-independent adhesion system is inhibited by preincubation of cell monolayers with cycloheximide before dissociation. Aggregation is also reduced after exposure to monensin, implicating a role for surface-translocated glycoproteins in this mechanism of adhesion. In coaggregation experiments using C2 myoblasts and 3T3 fibroblasts in which the Ca2+-dependent adhesion system was inactivated, no adhesive specificity between the two cell types was seen. Although synthetic peptides containing the RGD sequence are known to inhibit cell-substratum adhesion in various cell types, incubation of C2 myoblasts with the integrin-binding tetrapeptide, RGDS, greatly stimulated the Ca2+-independent aggregation of these cells while control analogs had no effect. These results show that a Ca2+- independent mechanism alone is sufficient to allow for the rapid formation of multicellular aggregates in a mouse myoblast line, and that many of the requirements and perturbants of the Ca2+-independent system of intercellular myoblast adhesion are similar to those of the Ca2+-dependent adhesion mechanisms.  相似文献   

4.
Embryonic chick neural retina cells possess two classes of adhesion mechanism, one Ca2+-independent, one Ca2+-dependent, responsible for short-term cell aggregation. This study investigates the role of these mechanisms in the long-term cell sorting potentially relevant to in vivo histogenesis. Retina cells are prepared either with both (E cells) or with only one mechanism (TC cells, CD; LTE cells, CI), respectively. The two types of cell preparations are differentially labelled using fluorescein or rhodamine isothiocyanate, mixed and allowed to aggregate in the presence or absence of cycloheximide at 0.5 microgram ml-1 to retard metabolic recovery of the removed adhesive mechanism. When observed by fluorescence and phase-contrast microscopy, the aggregates formed in cycloheximide show cell sorting, the cells with both mechanisms assuming a more interior position relative to those with a single adhesion mechanism. In parallel hanging-drop experiments, preformed aggregates of cells with a single adhesion mechanism are seen to spread upon aggregates of cells with both mechanisms. No sorting occurs amongst cells from a given stage prepared using any single dissociation protocol. The observed cell sorting would thus seem to derive exclusively from differential cell adhesiveness dependent upon the different dissociation conditions and maintained in the presence of cycloheximide. The experiments support the hypothesis that the dual CI and CD adhesion mechanisms in question can play a central role in governing cell-sorting behaviour during normal histogenesis.  相似文献   

5.
The mechanisms of adhesion of the retinal and pigment epithelium cells, as well of cell interaction within each of these tissues were studied during development. It was shown by means of separation of retina from pigment epithelium in different dissociation media that the adhesion of these tissues in 5-6 day old chick embryos is realized via a Ca2+-independent mechanism. The adhesion of these tissues decreases between days 7 and 16. Starting from day 16, both Ca2+-independent and Ca2+-dependent mechanisms are involved in the interaction of the retinal and pigment epithelium cells. By measuring the output of single cells into the suspension after the treatment of retina and pigment epithelium with different dissociating agents, it was shown that from the 5th day of incubation on the adhesion of pigment epithelium cells is mediated by Ca2+-dependent mechanism. In the retina three types of cells were found: interacting via Ca2+-dependent mechanism only, Ca2+-independent mechanism only, and both the mechanisms. In the course of differentiation, the numbers of the population of cells interacting only via Ca2+-dependent mechanism increase, while those of cells interacting via Ca2+-independent mechanism decrease. It is suggested that at each developmental stage those retinal cell possess Ca2+-dependent mechanism of adhesion which are closest to the definitive state.  相似文献   

6.
Jang DJ  Ban B  Lee JA 《Molecules and cells》2011,32(6):511-518
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner.  相似文献   

7.
Summary By using an in vitro functional assay, we have shown that Drosophila embryonic cells possess Ca2+-dependent adhesive sites, which resemble in many respects those described for vertebrate cells and tissues. The cells, obtained by mechanical disruption of gastrulastage embryos, form aggregates within 30 min when maintained under constant rolling. The aggregation is completely dependent on the presence of Ca2+ in the medium. In its absence, the cells remain dispersed but the process is reversible by readdition of Ca2+. In addition the aggregation is temperature-dependent. No aggregation occurs at 4° C but it can be restored by raising the temperature to 25° C. These properties are characteristic of these cells: established cell lines do not aggregate under the same conditions and mixing of cell lines and embryonic cells does not result in chimeric aggregates, thus pointing towards cell-type selectivity with respect to aggregability. Observations in electron microscopy have shown that the embryonic cells in the aggregates tightly adhere to one another and form, as early as after 30 min, maculae adherens junctions. Drosophila embryonic cells have adhesion sites that are protected from trypsin proteolysis in the presence of Ca2+ and sensitive in its absence. The cells' aggregation can be inhibited by a mouse antiserum directed against cell-surface components and a good correlation exists between neutralization of the inhibitory activity of the antiserum and the presence of trypsin-sensitive sites on the cells. These data are in favour of cell-cell adhesion mediated by specific adhesion proteins.  相似文献   

8.
The reaggregation kinetics of embryonic chick neural retina cells prepared using several different dissociation procedures were monitored through decreases in the small-angle light scattering of aggregating samples. Two distinct modes of aggregation were revealed, one Ca2+ independent, the other Ca2+ dependent, suggesting the existence of two separate adhesion mechanisms. By varying the concentrations of Ca2+ and trypsin in the dissociation medium, we obtained cells which exhibited both, either, or neither mode of aggregation. The Ca2+-independent adhesiveness is active in the absence of proteolysis, is resistant to low levels of trypsin (0.001%), but is readily inactivated at higher trypsin concentrations in either the presence or absence of Ca2+. It is relatively temperature independent. By contrast, the Ca2+-dependent adhesiveness is not detected before exposure of the cells to proteolysis. It is expressed after tryptic proteolysis in the presence of Ca2+ and is then highly temperature dependent. It is resistant to further digestion by trypsin in the continued presence of Ca2+ but is lost when Ca2+ is subsequently removed, apparently through the expression of tryptic cleavage incurred earlier. We suggest that its increased activity may result at least in part from the clustering of surface components into adhesive patches. A provisional model is presented correlating these data.  相似文献   

9.
Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling.  相似文献   

10.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

11.
Summary— Sea urchin embryos can be easily dissociated into single cells by exposure to Ca2+- and Mg2+-free seawater. When transferred back to normal seawater, isolated cells spontaneously form aggregates capable of development. Here, the Ca2+-dependent self-aggregation of toposome, a 22S glycoprotein complex which mediates cell-cell adhesion in sea urchin embryos, has been investigated using the purified molecule. Results show that the 22S complex is completely converted to 15S particles by sedimentation on sucrose isokinetic gradients in the presence of EDTA. Reconstitution of the 22S complex is achieved by readdition of Ca2+. We propose that the 15S particle constitutes the toposome functional unit on the cell surface.  相似文献   

12.
The mechanism by which Bcl-2 inhibits apoptosis is unknown. One proposal is that Bcl-2 regulates intracellular Ca2+ fluxes thought to mediate apoptosis. In the present study, we investigated Bcl-2's mechanism of action by determining the effect of Bcl-2 on intracellular Ca2+ fluxes in the WEH17.2 mouse lymphoma cell line, which does not express Bcl-2, and its stable transfectant, which expresses a high level of Bcl-2. Treatment with the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin produced marked alterations in intracellular Ca2+ homeostasis in both WEH17.2 and W.Hb12 cells, including elevation of free cytosolic Ca2+, endoplasmic reticulum Ca2+ pool depletion, capacitative entry of extracellular Ca2+, and increased loading of Ca2+ into mitochondria. Similar changes in intracellular Ca2+ occurred spontaneously in both cell lines following exponential growth. In both situations, W.Hb12 cells maintained optimal viability despite marked alterations in intracellular Ca 2+' whereas WEH17.2 cells underwent apoptosis. Treatment with the glucocorticoid hormone, dexamethasone, induced apoptosis in WEH17.2 cells, but not in W.HB12 cells, even though dexamethasone treatment did not alter intracellular Ca2+ homeostasis in either cell line. These findings indicate that Bcl-2 acts downstream from intracellular Ca 2+ fluxes in a pathway where Ca2+-dependent and Ca2+-independent death signals converge.  相似文献   

13.
The hypothesis that intercellular adhesion can be subdivided into two separable phenomena, an initial recognition event and a subsequent stabilization, is supported by the use of a new cell binding assay that provides a quantitative measure of intercellular binding strengths. Radioactive single cells are brought into contact with cell monolayers at 4°C in sealed compartments. The compartments are inverted and a centrifugal force is then applied tending to dislodge the probe cells from the monolayers. By varying the speed of centrifugation, the force maintaining associations between embryonic chick neural retina cells was determined to be on the order of 10?5 dynes after incubation at 4°C. Brief incubations at 37°C resulted in significant strengthening of the intercellular bond. Using this cell binding assay, neural retina cells were shown to exhibit both a Ca++-independent and a Ca++-dependent mechanism in their initial binding to one another.  相似文献   

14.
15.
Acute respiratory distress syndrome (ARDS) is a contemporary term incorporating the historic ‘acute lung injury’ and the colloquial term ‘shock lung’. ARDS remains a serious and enigmatic human disease, causing significant mortality. The mechanisms involved at the alveolar cell/capillary endothelial interface have been explored but to date we lack clarity on the role of intracellular calcium ([Ca2+]i) fluxes across this interface. To explore the mechanisms of Ca2+ induced inflammatory reaction in epithelial cells and pulmonary microvascular endothelial cells (HMVEC) located at the two sides of blood-air barrier, lung epithelial A549 and HMVEC cells were treated with LPS. Our results demonstrated that LPS evoked the increase of [Ca2+]i, TNF-α and IL-8 in both cells types. The [Ca2+]i increases involved intracellular but not extracellular Ca2+ sources in A549, but both intracellular and extracellular Ca2+ sources in HMVEC cells. The effects of LPS on both cells types were completely inhibited by the combination of LPS and CaSR-targeted siRNA. Furthermore, LPS-inhibited cell proliferations were significantly reversed by the combined treatment. Therefore, LPS induced different mechanisms of [Ca2+]i increase during the activation of CaSR in A549 and HMVEC cells, which translates into functional outputs related to ARDS.  相似文献   

16.
Studies on several different types of carcinomas, with the notable exception of colon carcinoma, have shown that poorly differentiated tumors are frequently deficient in E-cadherin dependent cell-cell adhesion. In this study, we examined Ca2+-dependent cell-cell adhesion in colon carcinoma cell lines. Five poorly differentiated (Clone A, MIP 101, RKO, CCL 222, CCL 228) and four moderately-well differentiated (CX-1, CCL 235, DLD-2, CCL 187) colon carcinoma cell lines were assayed for their ability to form cell-cell aggregates and for their levels of E-cadherin expression. All of the poorly differentiated cell lines exhibited low levels of Ca2+-dependent cell-cell aggregation, in contrast to the moderately-well differentiated cell lines. Contrary to most previous studies, however, we observed that three of the five poorly differentiated cell lines examined expressed E-cadherin by FACS analysis and immunoprecipitation using an E-cadherin mAb. In fact, two of these cell lines expressed a 3- to 4-fold higher level of E-cadherin than that found in the moderately-well differentiated cell lines. mRNA levels for E-cadherin, as evaluated by both RT-PCR and Northern hybridization, corresponded to the levels of protein expression in each of the cell lines. Immunoprecipitation with an E-cadherin mAb, which is known to co-precipitate the catenins, demonstrated that the three poorly differentiated cell lines expressing E-cadherin did not co-precipitate α-catenin, although all of the moderately-well differentiated cell lines expressed both α- and β-catenin. RT-PCR confirmed the absence of the α-catenin mRNA from two of these cell lines. Stable expression of an α-catenin cDNA in one of the poorly differentiated cell lines lacking α-catenin expression resulted in a 5-fold increase in its level of Ca2+-dependent cell-cell aggregation, providing evidence that α-catenin is directly responsible for the loss of cell-cell adhesion in some cell lines. The α-catenin transfectants also exhibited a marked reduction in migration on collagen I. These data indicate that loss of α-catenin expression, as well as E-cadherin expression, can lead to a phenotype associated with poorly differentiated colon carcinomas.  相似文献   

17.
18.
Reaggregation of mechanically dissociated mouse cerebellar cells (M cells) was compared with cells that received an additional trypsinization either before (T cells) or after (MT cells) the dissociation step. Reaggregation behaviour was followed by measuring the number and size distribution of particles with a Coulter counter. Aggregation rates which were calculated as percentage of decrease of particles could be measured reproducibly. Since the percentage of very large particles (> 100 cells) formed during aggregation varied considerably from one experiment to the next, size distribution curves of particles were used more to distinguish qualitative differences in a less quantitative way.Whereas aggregation rates and size distribution of particles with M cells were almost identical when aggregation occurred in medium of high (1.1 mM) or low (0.1 mM) Ca2+ concentrations, T and MT cells aggregated better at high Ca2+ concentration. Their aggregation rates were reduced by approx. 50% at low Ca2+ concentrations and larger aggregates were hardly formed under these conditions. The aggregation rates of T and MT cells showed a clear dependence on Ca2+ concentration, being half maximal at approx. 0.1 mM Ca2+.The ability of M cells to aggregate at low or high Ca2+ concentrations was influenced by subsequent trypsinization to produce MT cells. When the trypsin concentration was changed from 0.001 to 0.1% during this procedure the aggregation rates at high Ca2+ concentration were reduced to approx. 80% of the maximal value, whereas those at low Ca2+ concentrations were reduced to 35%. Variation of the Ca2+ concentration between 1.1 and 0.1 mM during the trypsinization step (0.015% trypsin) revealed no difference on the aggregation rates.We propose that M cells aggregate mainly or exclusively by a Ca2+-independent binding mechanism, whereas T or MT cells aggregate using a Ca2+-dependent one which may be functionally silent in M cells.  相似文献   

19.
The biological significance of phosphatidylcholine-specific phospholipase C (PC-PLC) in hepatocarcinogenesis and the proliferation and differentiation of rat liver cancer cells was investigated. The Ca2+-dependent activities of PC-PLC gradually increased during N-nitrosodiethylamine (DEN)-induced hepatocarcinogenesis and peaked at weeks 18–20 when the tumour formed. There was a close relationship between Ca2+-dependent PC-PLC activities and cellular DNA content, membranous γ-glutamyltranspeptidase (γ-GT), and tyrosine protein kinase. In contrast, Ca2+-independent PC-PLC activities decreased during hepatocarcinogenesis. Similarly, when CBRH-7919 rat liver cancer cells were treated with phorbol 12-myristate 13-acetate, a proliferation stimulator of the cells, γ-GT and Ca2+-dependent activities of PC-PLC and the expression of α-fetoprotein increased significantly. However, when these cells were induced by retinoic acid to differentiate, Ca2+-dependent PC-PLC and γ-GT activities decreased significantly, together with α-fetoprotein expression. There was a close relationship between Ca2+-dependent PC-PLC and γ-GT activities during differentiation as there was during proliferation. We suppose that Ca2+-dependent PC-PLC is involved in rat hepatocarcinogenesis induced by DEN and that it plays an important role in the phorbol ester-induced proliferation or retinoic acid-induced differentiation of liver cancer cells.  相似文献   

20.
Membrane fractions from mature silver beet (Beta vulgaris) deveined leaf and leaf stem homogenates have associated Ca2+ -dependent protein kinase. The Ca2+ -dependent protein kinase activity is associated with plasma membranes (density 1.14-1.18 grams per cubic centimeter) as determined from copurification on isopycnic centrifugation with plasma membrane markers such as β-glucan synthetase, eosin-5-maleimidelabeling, and specific naphthylphthalamic acid-binding. The Ca2+ -dependent protein kinase is not specifically associated with chloroplasts or mitochondria. The membrane-bound Ca2+ -dependent protein kinases were solubilized with 0.8% (volume/volume) Nonidet P40. The solubilized enzymes were extensively purified by a protocol involving binding to diethylaminoethyl-cellulose (Whatman DE-52), Ca2+ -dependent binding to phenyl-Sepharose CL-4B, gradient elution from diethylaminoethyl-Sephacel (resolving two distinct Ca2+ -dependent protein kinases), and gel filtration on Ultrogel AcA 44. These two membrane-derived enzymes have similar molecular weights but differ in protein substrate specificity, in Km values for ATP, and in Ca2+ -independent activation by unsaturated fatty acids. The membrane-bound enzymes correspond closely in these properties to two Ca2+ -dependent protein kinases present in the soluble phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号