首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Magic angle spinning 31P-NMR (MAS 31P-NMR) spectra of bovine rod outer segments, unphosphorylated and phosphorylated, were obtained. In the phosphorylated samples the spectra showed new resonances not assignable to phospholipids. These signals were present only when stimulation of receptor phosphorylation occurred. These resonances were not due to exogenous, soluble phosphorus-containing compounds. Limited proteolysis to remove the carboxyl-terminal region of the photoreceptor that contains the phosphorylation sites removed these resonances. The chemical shifts were in the usual range for serine phosphate and threonine phosphate. The pKa obtained from a pH titration of the 31P chemical shift was typical of serine phosphate. Therefore, these 31P-NMR resonances were assigned to the phosphorylation sites on membrane proteins in the rod outer segment disk membranes. Static 31P-NMR measurements revealed that at least some of these sites gave rise to relatively narrow resonances, indicative of considerable motional freedom of the carboxyl-terminal segment of the photoreceptor when phosphorylated. These data indicate that it is possible to study phosphorylation sites on membrane proteins using MAS 31P-NMR, and that using in vivo 31P 'spin labelling' one can study directly and selectively regions of receptors crucial to receptor function.  相似文献   

2.
31P-NMR has been used extensively for the study of cytosolic small molecule phosphates in vivo and phospholipid structures in vitro. We present in this paper a series of studies of the brain by 31P-NMR, both in vivo and in extracts, showing the information that can be derived about phospholipids. 31P-NMR spectra of mouse brain at 73 mHz are characterised by almost a complete absence of the large phosphodiester peak in comparison to equivalent spectra at 32 mHz. Proton decoupled spectra in vivo, and spectra of extracts, show that the phosphodiester peak observed in 32 mHz spectra in vivo is mainly due to phospholipid bilayers. Homogenates of quaking and control mouse brains, and of bovine grey matter, show another narrower phosphodiester peak possibly from small phospholipid vesicles. This peak is increased in intensity in the affected mice. These experiments demonstrate the presence of three major components contributing to the phosphodiester resonance: bilayer phospholipids, more mobile phospholipids, and the freely soluble cytosolic molecules glycerophosphocholine and glycerophosphoethanolamine. These NMR methods for non-invasive investigation of phospholipid structures in the brain might be extended to studies of patients with membrane involved diseases such as multiple sclerosis.  相似文献   

3.
In vivo 31P-NMR spectroscopy (31P-MRS) was used to study the metabolism of phosphate compounds in rat liver under various conditions. The changes in hepatic concentrations of ATP and inorganic phosphate (Pi) or intracellular pH (pHi) were monitored during hypovolemic shock with or without the infusion of catecholamines. Rapid decreases in the ATP level and pHi with a concomitant increase of Pi were observed upon induction of the hypovolemic shock. Dopamine infusion markedly improved the liver ATP concentration and intracellular acidosis, but epinephrine or norepinephrine were without effects. The present results suggest that dopamine increases abdominal blood flow and improves the energy metabolism in the liver during hypovolemic shock.  相似文献   

4.
Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure.  相似文献   

5.
The metabolic response of mammary carcinoma in the C3H mouse to photodynamic therapy (PDT) was measured using in vivo 31P nuclear magnetic resonance (31P-NMR) spectroscopy and pH microelectrodes. Twenty-four hours after administration of Photofrin II (12.5 mg/kg), the tumor was subjected to photoactivation using an argon dye laser. Optical treatment doses were 200, 400, and 600 J/cm2 and corresponded to the following tumor control doses: TCD10/30, TCD50/30, and TCD90/30, respectively. In vivo 31P-NMR spectra and pH micro-electrode measurements were obtained prior to treatment and at 4, 24, 48, and 72 h and 1 week post-treatment. The data revealed a significant (P less than 0.0002) alkalosis as indicated by the pH measured by NMR compared to pH measured by microelectrodes at all treatment levels and time points. Spectral differences between treatment groups were apparent as early as 4 h after treatment. The ratio of beta-nucleoside triphosphate to inorganic phosphate at 4 h after treatment was significantly (P less than 0.01) smaller for 600 J/cm2 treatment than for 200 J/cm2 treatment. At curative (600 J/cm2) levels, from 48 h on, no phosphate resonances were detected in the spectra. The pH measured by NMR transiently decreased from pretreatment levels after 200 and 400 J/cm2 treatment (P less than 0.002, P less than 0.009, respectively), while no change in pH from pretreatment values was found after 600 J/cm2 treatment. The data suggest that the early metabolic response of mammary carcinoma to PDT, as indicated by 31P-NMR spectroscopy, is dose dependent, and may be a sensitive indicator of biological outcome to treatment.  相似文献   

6.
Size-dependent changes in therapeutically relevant and interrelated metabolic parameters of a murine fibrosarcoma (FSaII) were investigated in vivo using conscious (unanesthetized) animals and tumor sizes less than or equal to 2% of body weight. Tumor pH and bioenergetics were evaluated by 31P nuclear magnetic resonance spectroscopy (31P-MRS), and tumor tissue oxygen tension (pO2) distribution was examined using O2-sensitive needle electrodes. During growth FSaII tumors showed a progressive loss of phosphocreatine (PCr) and nucleoside triphosphate (NTP) with increasing inorganic phosphate (Pi) and phosphomonoester (PME) signals. Ratios for PCr/Pi, PME/Pi, NTP/Pi, and phosphodiester/inorganic phosphate (PDE/Pi) as well as pH determined by 31P-NMR (pHNMR) and the mean tissue pO2 progressively declined as the tumors increased in size. The only relevant ratio increasing with tumor growth was PME/NTP. When the mean tissue pO2 value was plotted against pHNMR, NTP/Pi, PCr/Pi, PME/Pi, and PDE/Pi for tumor groups of similar mean volumes, a highly significant positive correlation was observed. There was a negative correlation between mean tumor tissue pO2 values and PME/NTP. From these results we concluded that 31P-MRS can detect changes in tumor bioenergetics brought about by changes in tumor oxygenation. Furthermore, the close correlation between oxygenation and energy status suggests that the microcirculation in FSaII tumors yields an O2-limited energy metabolism. Finally, a correlation between the proportion of pO2 readings between 0 and 2.5 mmHg and the radiobiologically hypoxic cell fraction in FSaII tumors was observed. The latter finding might be of particular importance for radiation therapy.  相似文献   

7.
For the assessment of 31P-NMR spectroscopic data, phospholipid precursors (phosphorylethanolamine (PE) and phosphocholine) and catabolites (glycerophosphorylethanolamine (GPE) and glycerophosphorylcholine (GPC)), as well as adenosine phosphates were chemically determined in regenerating rat liver. The data were compared with those obtained by in vivo and in vitro 31P-NMR spectroscopies. Chemical assay revealed a significant increase of PE and a decrease of GPE, GPC and ATP in hepatectomy group compared to sham operation group. The values obtained by in vitro NMR were in good agreements with those of chemical assay, but significant differences between the two groups were observed only in PE and inorganic phosphate (Pi). Noticeable increase in PME was not detected by in vivo 31P-NMR spectroscopy, although the increase of PE was about 2.5-times that of the control and its constitution ratio to the whole phosphomonoester (PME) was less than 15%. On the other hand, in vivo NMR showed a large phosphodiester (PDE) peak occupying approx. 40% of the total phosphorus signal, while the contribution of its constituents, GPE and GPC was about 5% found by both chemical assay and in vitro NMR. The PDE peak in in vivo NMR seemed to reflect the membrane phospholipid itself rather than its catabolites. A slight decrease of phosphoenergetic level in regenerating rat-liver was commonly suggested by all three analytical methods.  相似文献   

8.
Hyperammonemia is a major contributing factor to the neurological abnormalities observed in hepatic encephalopathy and in congenital defects of ammonia detoxication. In rats variable changes in labile energy rich phosphates in the brain have been observed in hyperammonemia using biochemical methods. Using 31P-NMR spectroscopy however no significant changes of the relative concentrations of the energy rich phosphates alpha, beta and gamma-ATP, phosphocreatine, inorganic phosphate and the pH were found in the fronto parietal cortex of the urease treated hyperammonemic rat. Alterations in the metabolites of these compounds do not appear to be a major pathomechanism of ammonia toxicity in this brain area.  相似文献   

9.
We studied physiological roles of the yeast vacuole in the phosphatemetabolism using 31P-in vivo nuclear magnetic resonance (NMR)spectroscopy. Under phosphate starvation wild-type yeast cellscontinued to grow for two to three generations, implying thatwild-type cells contain large phosphate pool to sustain thegrowth. During the first four hours under the phosphate starvedcondition, the cytosolic phosphate level was maintained almostconstant, while the vacuolar pool of phosphate decreased significantly.31P-NMR spectroscopy on the intact cells and perchloric acid(PCA) extracts showed that drastic decrease of polyphosphatetook place during this phase. In contrast,  相似文献   

10.
The activity of the cerebral pyruvate recycling pathway and energy metabolism in mice infected with Trichinella spiralis were investigated using (13)C-NMR and in vivo (31)P-NMR spectroscopy, respectively. The (13)C-NMR analysis, using [1,2-(13)C(2)] acetate as a substrate, of whole-brain extracts demonstrated that activity of the pathway increased when T. spiralis infection induced hypoglycemia in the host. The in vivo (31)P-NMR observation showed that the cerebral ATP in normal level sustained throughout this experiment. These findings indicate that the pyruvate recycling pathway plays a role in the energy supply to the host in hypoglycemia induced by T. spiralis infection.  相似文献   

11.
Malignant astrocytoma is the most common primary brain tumor in adults. The median survival of patients with malignant astrocytomas (high-grade astrocytomas) is about 1-2 years, despite aggressive treatment that includes surgical resection, radiotherapy and cytotoxic chemotherapy. Therefore, novel therapeutic approaches are needed to prolong survival. We investigated antitumor immunity conferred by the intratumoral injection of dendritic (DC) and irradiated glioma cells (IR-GC) in a mouse brain tumor model. Intratumorally injected DC migrated to the lymph nodes and elicited systemic immunity against autologous glioma cells. In a treatment model, intratumoral injection of DC and IR-GC prolonged the survival of brain tumor-bearing mice. Efficacy was reduced when studies were performed in mice depleted of CD8(+) T cells. Administration of DC or IR-GC alone had no effect on survival of brain tumor-bearing mice. CTL activity against glioma cells from immunized mice was also stimulated by coadministration of DC and IR-GC compared with the controls. These results support the therapeutic efficacy of intratumoral injection of DC and IR-GC.  相似文献   

12.
Perchloric acid extracts of radiation-induced fibrosarcoma (RIF-1) tumors grown in mice have been analyzed by multinuclear NMR spectroscopy and by various chromatographic methods. This analysis has permitted the unambiguous assignment of the 31P resonances observed in vivo to specific phosphorus-containing metabolites. The region of the in vivo spectra generally assigned to sugar phosphates has been found in RIF-1 tumors to contain primarily phosphorylethanolamine and phosphorylcholine rather than glycolytic intermediates. Phosphocreatine was observed in extracts of these tumor cells grown in culture as well as in the in vivo spectra, indicating that at least some of the phosphocreatine observed in vivo arises from the tumor itself and not from normal tissues. In the 31P-NMR spectra of the perchloric acid extract, resonances originating from purine and pyrimidine nucleoside di- and triphosphate were resolved. HPLC analyses of the nucleotide pool indicate that adenine derivatives were the most abundant components, but other nucleotides were present in significant amounts. The 1H and 13C resonance assignments of the majority of metabolites present in RIF-1 extracts have also been made. Of particular importance is the ability to observe lactate, the levels of which may provide a noninvasive measure of glycolysis in these cells in both the in vitro states. In addition, the aminosulfonic acid, taurine, was found in high levels in the tumor extracts.  相似文献   

13.
Purified splenic macrophage (M phi) from normal DBA/2J mice and mice bearing P815 tumors were examined for responsiveness to lymphokine (LK) preparations containing high concentrations of IFN-gamma. For both normal and tumor-bearing M phi, LK treatment induced morphologic changes and increased the percentage of Ia+ cells from 35 to 55%. Although neither population exhibited spontaneous cytotoxicity toward P815 targets, LK treatment induced considerable tumoricidal activity in tumor-bearing M phi (32 to 80% lysis) but only minimal activity in normal M phi (8 to 17% lysis). Subcutaneous injection of 1 X 10(6)P815 cells into DBA/2J led to progressive tumor growth and death of 100% of the recipients after 27 +/- 3 days. Injection of a 1:18 mixture of P815 with either LK-activated normal or tumor-bearing M phi caused tumor regression after 10 days, and prolonged life until 43 +/- 4 days with tumor-bearing M phi and 39 +/- 3 days with normal M phi. Untreated normal or tumor-bearing M phi were unable to cause the effect (30 +/- 2 days), and lymphocytes could not be substituted for M phi (25 +/- 3 days). In x-irradiated recipients, no effect of LK-activated M phi could be observed (control = 19 +/- 2 days; LK-activated tumor-bearing M phi = 21 +/- 3 days). In addition, administration of an admixture of LK-treated M phi and x-rayed tumor before challenge with viable P815 enabled the recipient to inhibit tumor growth and caused tumor necrosis with inflammatory cell infiltration of the tumor. These observations suggest that, in part, LK-activated M phi may interact in vivo with host-derived cellular components and enhance the immune reactivity of the host against the tumor.  相似文献   

14.
1. We evaluated changes in high-energy phosphate metabolism in the muscle of loaches during 2-phenoxyethanol (2-PE) anesthesia by 31P-NMR.2. The creatine phosphate (PCr) concentration increased while the inorganic phosphate (Pi) concentration decreased in the muscle as 2-PE anesthesia was continued, but both returned to the preanesthetic values with recovery from the anesthesia.3. The sugar phosphate (SP) concentration also increased during anesthesia, but SP did not disappear after recovery.4. In the muscle of loaches anesthetized with 2-PE, the phosphate metabolism was aerobic, but carbohydrate metabolism was suppressed.  相似文献   

15.
Changes in the phosphomonoester (PM) peak, as observed in in vivo 31P-NMR spectra, are often attributed to changes in phospholipid synthesis and therefore to changes in cell proliferation. However, this technique provides information about the absolute size of the phosphomonoester pool rather than its turnover rate. To investigate whether there is a good correlation between changes in PM concentration and its turnover rate, we studied the turnover rate of the two major PM compounds, phosphocholine and phosphoethanolamine, in rat testes at different stages of testis development. [3H]Choline and [3H]ethanolamine were injected intraperitoneally into rats at the age of 3, 6 and 13 weeks, respectively. Phosphorylation of these compounds and their incorporation into phospholipids, were followed up to 6 h after injection of the phospholipid precursors. When these data were compared with the changes observed in the in vivo 31P-NMR PM peak, the concentration of the PM compounds appeared to correlate linearly, both with the conversion of choline into phosphocholine, as well with the rate of phospholipid synthesis, and therefore with the rate of cell proliferation. Hence, it is suggested that cell proliferation can be monitored by determining the changes in the PM peak that is observed in in vivo 31P-NMR spectra.  相似文献   

16.
Spleen cells of BALB/c mice bearing a syngeneic CSA1M fibrosarcoma were treated with anti-Thy-1.2 antibody plus C, yielding a T cell-depleted, APC-containing fraction. The APC-containing fraction was first tested for its capacity to present exogenous modified-self or another tumor (Meth A) Ag after in vitro pulsing. The results showed comparable Ag-presenting capacities to those obtained by APC-containing fraction from normal spleen cells, indicating that APC function is not affected in tumor-bearing mice. We next examined whether APC from CSA1M-bearing mice bind endogenously generated CSA1M tumor Ag onto its surfaces to stimulate tumor-specific T cells. Five rounds of inoculation of APC-containing fraction from CSA1M-bearing mice without further in vitro pulsing resulted in the induction of potent anti-CSA1M immune resistance. The involvement of anti-CSA1M T cells in the induction of anti-CSA1M immunity was excluded by the fact that the in vivo immunity was excluded by the fact that the in vivo immunity was delivered by Thy-1+ cell-depleted, but not by Thy-1+ cell-enriched fractions of spleen cells from CSA1M-bearing mice. Moreover, the failure of Sephadex G10-passed spleen cells to deliver anti-CSA1M resistance demonstrated the absolute requirement of APC for inducing the in vivo immunity. Finally, this in vivo resistance was found to be tumor specific, because APC fractions from CSA1M-bearing and Meth A-bearing BALB/c mice induced immune resistance selective against the corresponding tumor cell challenge. These results indicate that APC from tumor-bearing hosts can not only exert unaffected APC function against exogenous Ag, but also function to present tumor Ag generated endogenously in the tumor-bearing state and to produce tumor-specific immunity in vivo.  相似文献   

17.
Perfused mycelia of Neurospora crassa were analyzed in vivo with 31P-NMR. Both the cytoplasmatic and the vacuolar pH and the concentrations of phosphate metabolites were followed up to 30 h under constant conditions. No circadian changes were detected. However, slight changes in the nutrition or oxygen supply induced distinct changes in the intracellular pH and in the concentrations of metabolites. An increase of temperature from 21 to 43 degrees C lowered the intracellular pH and the metabolite concentrations. Changes in the perfusion rate affect the temperature responses, probably due to different availability of carbon sources and exhaustion of acid catabolites.  相似文献   

18.
The effect of acclimation salinity and salinity changes on the concentration of high-energy phosphate metabolites and arginine kinase (AK) flux was examined in vivo in juvenile blue crabs using 31P-nuclear magnetic resonance (NMR). Crabs were acclimated for 7 days to a salinity of 5 or 35 per thousand and then placed in a flow apparatus that could sustain the animals while NMR spectra were acquired. Crabs were subjected to either hyperosmotic salinity changes, where an animal acclimated to 5 per thousand was exposed to a salinity of 35 per thousand, or hyposmotic changes, which involved the reciprocal exchange. Neither acclimation salinity nor salinity change had a significant effect on the concentrations of arginine phosphate, inorganic phosphate or ATP. 31P-NMR saturation transfer experiments were used to determine the effect of salinity on the forward and reverse flux of the AK reaction. There was no significant effect of acclimation salinity or salinity change on the flux rate through this reaction. This is in contrast to previous results, which showed that AK flux in isolated muscle was sensitive to prevailing osmotic conditions (Holt and Kinsey, J. Exp. Biol. 205 (2002) 1775-1785). The present study indicates that the integrated osmoregulatory capacity of the intact animal is sufficient to preserve cellular energy status and enzyme function during acute salinity changes.  相似文献   

19.
Perchloric acid extracts of radiation-induced fibrosarcoma (RIF-1) tumors grown in mice have been analyzed by multinuclear NMR spectroscopy and by various chromatographic methods. This analysis has permitted the unambiguous assignment of the 31P resonances observed in vivo to specific phosphorus-containing metabolites. The region of the in vivo spectra generally assigned to sugar phosphates has been found in RIF-1 tumors to contain primarily phosphorylethanolamine and phosphorylcholine rather than glycolytic intermediates. Phosphocreatine was observed in extracts of these tumor cells grown in culture as well as in the in vivo spectra, indicating that at least some of the phosphocreatine observed in vivo arises from the tumor itself and not from normal tissues. In the 31P-NMR spectra of the perchloric acid extract, resonances originating from purine and pyrimidine nucleoside di- and triphosphate were resolved. HPLC analyses of the nucleotide pool indicate that adenine derivatives were the most abundant components, but other nucleotides were present in significant amounts. The 1H and 13C resonance assignments of the majority of metabolites present in RIF-1 extracts have also been made. Of particular importance is the ability to observe lactate, the levels of which may provide a noninvasive measure of glycolysis in these cells in both the in vivo and in vitro states. In addition, the aminosulfonic acid, taurine, was found in high levels in the tumor extracts.  相似文献   

20.
In vivo anti-tumor activity of spleen cells from C3H/eb mice bearing a syngeneic fibrosarcoma was shown previously to decline to an undetectable level and be replaced by tumor-enhancing activity as tumor growth proceeds. In the light of our findings that thymocytes in the early stages of thymic processing can bring about tumor enhancement, we postulated that premature release of thymocytes and their accumulation in the spleen might account for the loss of the anti-tumor response. In the present experiments an injection of thymocytes did in fact cancel the anti-tumor response of reactive splenocytes from tumor-bearing mice. In order to determine whether premature thymocyte release occurs naturally in the tumor-bearing animals, we assayed activity of the enzyme TdT (as a marker for thymus cells) in the spleens of these mice during progressive tumor growth. Cells with TdT activity were clearly evident in the spleens of the tumor-bearing animals, were derived from the thymus, and accumulated in parallel to the loss of anti-tumour reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号