首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oocytes, in general, are greatly enriched in mitochondria to support higher rates of macromolecular synthesis and critical physiological processes characteristic of early development. An inability of these organelles to amplify and/or to accumulate ATP has been linked to developmental abnormality or arrest. The number of mitochondrial genomes present in mature mouse and human metaphase II oocytes was estimated by fluorescent rapid cycle DNA amplification, which is a highly sensitive technique ideally suited to quantitative mitochondrial DNA (mtDNA) analysis in individual cells. A considerable degree of variability was observed between individual samples. An overall average of 1.59 x 10(5) and 3.14 x 10(5) mtDNA molecules were detected per mouse and human oocyte, respectively. Furthermore, the mtDNA copy number was examined in polar bodies and contrasted with the concentration in their corresponding oocytes. In addition, the density of mtDNA in a cytoplasmic sample was estimated in an attempt to determine the approximate number of mitochondria transferred during clinical cytoplasmic donation procedures as well as to develop a clinical tool for the assessment and selection of oocytes during in vitro fertilisation procedures. However, no correlation was identified between the mtDNA concentration in either polar bodies or cytoplasmic samples and their corresponding oocyte.  相似文献   

2.
It has been shown recently that there is premature mitochondria biosynthesis in blastocysts from older women whose egg or embryo quality is poor and that aneuploid blastocysts also have a high number of mitochondrial DNA (mtDNA) copies. Whether nondiploidy/aneuploidy or reduced egg or embryo quality causes premature mitochondrial biosynthesis is not known. This study constructed haploid, diploid, triploid, and tetraploid blastocysts by parthenogenetic activation, intracytoplasmic sperm injection with one or two sperm heads, blastomere electrofusion, respectively, and generated reduced cytoplasm quality embryos from diabetic mouse and in vitro fertilization of aged oocytes, and examined whether nondiploidy or reduced cytoplasm quality causes premature mitochondrial biosynthesis. MtDNA numbers of each blastocyst from different models were tested by absolute quantitative real-time polymerase chain reaction. It was found that mtDNA content in preimplantation embryos was not associated with their chromosome ploidy, while mtDNA copy numbers in embryos with suboptimal quality were increased. Therefore, it might be the reduced cytoplasmic quality, and not chromosome nondiploidy, that causes premature mitochondria biosynthesis in blastocysts.  相似文献   

3.
Mitochondrial prohibitin (PHB) proteins have diverse functions, such as the regulation of apoptosis and the maintenance of mitochondrial morphology. In this study, we clarified a novel mitochondrial function of PHB1 that regulates the organization and maintenance of mitochondrial DNA (mtDNA). In PHB1-knockdown cells, we found that mtDNA is not stained by fluorescent dyes, such as ethidium bromide and PicoGreen, although the mitochondrial membrane potential still maintains. We also demonstrated that mtDNA, which is predominantly found in the NP-40-insoluble fraction when isolated from normal mitochondria, is partially released into the soluble fraction when isolated from PHB1-knockdown cells, indicating that the organization of the mitochondrial nucleoids has been altered. Furthermore, we found that PHB1 regulates copy number of mtDNA by stabilizing TFAM protein, a known protein component of the mitochondrial nucleoids. However, TFAM does not affect the organization of mtDNA as observed in PHB1-knockdown cells. Taken together, these results demonstrate that PHB1 maintains the organization and copy number of the mtDNA through both TFAM-independent and -dependent pathways.  相似文献   

4.
Mitochondria have their own DNA (mitochondrial DNA [mtDNA]). Although mtDNA copy number is dependent on tissues and its decrease is associated with various neuromuscular diseases, detailed distribution of mtDNA copies in the brain remains uncertain. Using real-time quantitative PCR assay, we examined regional variation in mtDNA copy number in 39 brain regions of male mice. A significant regional difference in mtDNA copy number was observed (P<4.8×10(-35)). High levels of mtDNA copies were found in the ventral tegmental area and substantia nigra, two major nuclei containing dopaminergic neurons. In contrast, cerebellar vermis and lobes had significantly lower copy numbers than other regions. Hippocampal dentate gyrus also had a relatively low mtDNA copy number. This study is the first quantitative analysis of regional variation in mtDNA copy number in mouse brain. Our findings are important for the physiological and pathophysiological studies of mtDNA in the brain.  相似文献   

5.
Mitochondrial nucleoids (mt-nucleoids) of the A2780 line of cultured human cells were stained with DAPI and observed using an epifluorescence microscope. The mt-nucleoids appeared to be organized compactly in mitochondria. Numbers of mt-nucleoids per mitochondrion ranged from 1 to more than 10, and 70% were "multinucleated" mitochondria. Intensities of fluorescence of mt-nucleoids in each mitochondrion were measured by a video-intensified microscope system (VIM system) and copy numbers of mitochondrial DNA (mtDNA) in each mitochondria were determined. The copy numbers of mtDNA per mitochondrion ranged from 1 to 15, and the average was 4.6. Because the cells had 107 mitochondria on average, the copy number of mtDNA per cell was estimated to be about 500.  相似文献   

6.
Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear‐encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue‐specific consequences of mtDNA mutations are largely unknown. As post‐mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post‐mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease.  相似文献   

7.
8.
9.
10.
We have devised an efficient method for replicating and stably maintaining entire mitochondrial genomes in Escherichia coli and have shown that we can engineer these mitochondrial DNA (mtDNA) genome clones using standard molecular biological techniques. In general, we accomplish this by inserting an E.coli replication origin and selectable marker into isolated, circular mtDNA at random locations using an in vitro transposition reaction and then transforming the modified genomes into E.coli. We tested this approach by cloning the 16.3 kb mouse mitochondrial genome and found that the resulting clones could be engineered and faithfully maintained when we used E.coli hosts that replicated them at moderately low copy numbers. When these recombinant mtDNAs were replicated at high copy numbers, however, mtDNA sequences were partially or fully deleted from the original clone. We successfully electroporated recombinant mouse mitochondrial genomes into isolated mouse mitochondria devoid of their own DNA and detected robust in organello RNA synthesis by RT-PCR. This approach for modifying mtDNA and subsequent in organello analysis of the recombinant genomes offers an attractive experimental system for studying many aspects of vertebrate mitochondrial gene expression and is a first step towards true in vivo engineering of mammalian mitochondrial genomes.  相似文献   

11.
Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.  相似文献   

12.
13.
This study examined various biochemical parameters such as mitochondria and mitochondrial DNA (mtDNA), total heme and cyto P450 content in fresh hepatocytes and dedifferentiated hepatocytes. These parameters were chosen in order to understand the dramatic decrease in drug metabolism in cultured hepatocytes. The data in this study shows a temporal decrease in cytochrome P450, total heme and also a decrease in mitochondria. Also, the ratio of mtDNA content to mitochondrial density was found to increase as hepatocytes underwent dedifferentiation. Stereological analysis of cell preparations provided a measure of mitochondrial density per cell area and mtDNA content was assessed by the use of a specific radiolabelled probe. This study demonstrates that a loss of the organelle which is partially responsible for synthesis of heme correlates with a decrease in cytochrome P450.  相似文献   

14.
15.
《Autophagy》2013,9(9):1395-1406
Drug addiction is a chronic brain disease that is a serious social problem and causes enormous financial burden. Because mitochondrial abnormalities have been associated with opiate addiction, we examined the effect of morphine on mtDNA levels in rat and mouse models of addiction and in cultured cells. We found that mtDNA copy number was significantly reduced in the hippocampus and peripheral blood of morphine-addicted rats and mice compared with control animals. Concordantly, decreased mtDNA copy number and elevated mtDNA damage were observed in the peripheral blood from opiate-addicted patients, indicating detrimental effects of drug abuse and stress. In cultured rat pheochromocytoma (PC12) cells and mouse neurons, morphine treatment caused many mitochondrial defects, including a reduction in mtDNA copy number that was mediated by autophagy. Knockdown of the Atg7 gene was able to counteract the loss of mtDNA copy number induced by morphine. The mitochondria-targeted antioxidant melatonin restored mtDNA content and neuronal outgrowth and prevented the increase in autophagy upon morphine treatment. In mice, coadministration of melatonin with morphine ameliorated morphine-induced behavioral sensitization, analgesic tolerance and mtDNA content reduction. During drug withdrawal in opiate-addicted patients and improvement of protracted abstinence syndrome, we observed an increase of serum melatonin level. Taken together, our study indicates that opioid addiction is associated with mtDNA copy number reduction and neurostructural remodeling. These effects appear to be mediated by autophagy and can be salvaged by melatonin.  相似文献   

16.
The association of a particular mitochondrial DNA (mtDNA) mutation with different clinical phenotypes is a well-known feature of mitochondrial diseases. A simple genotype–phenotype correlation has not been found between mutation load and disease expression. Tissue and intercellular mosaicism as well as mtDNA copy number are thought to be responsible for the different clinical phenotypes. As disease expression of mitochondrial tRNA mutations is mostly in postmitotic tissues, studies to elucidate disease mechanisms need to be performed on patient material. Heteroplasmy quantitation and copy number estimation using small patient biopsy samples has not been reported before, mainly due to technical restrictions. In order to resolve this problem, we have developed a robust assay that utilizes Molecular Beacons to accurately quantify heteroplasmy levels and determine mtDNA copy number in small samples carrying the A8344G tRNALys mutation. It provides the methodological basis to investigate the role of heteroplasmy and mtDNA copy number in determining the clinical phenotypes.  相似文献   

17.
Derived from bacterial ancestors, mitochondria have maintained their own albeit strongly reduced genome, mitochondrial DNA (mtDNA), which encodes for a small and highly specialized set of genes. MtDNA exists in tens to thousands of copies packaged in numerous nucleoprotein complexes, termed nucleoids, distributed throughout the dynamic mitochondrial network. Our understanding of the mechanisms of how cells regulate the copy number of mitochondrial genomes has been limited. Here, we summarize and discuss our recent findings that Mip1/POLG (mitochondrial DNA polymerase gamma) critically controls mtDNA copy number by operating in 2 opposing modes, synthesis and, unexpectedly, degradation of mtDNA, when yeast cells face nutrient starvation. The balance of the 2 modes of Mip1/POLG and thus mtDNA copy number dynamics depends on the integrity of macroautophagy/autophagy, which sustains continuous synthesis and maintenance of mtDNA. In autophagy-deficient cells, a combination of nucleotide insufficiency and elevated mitochondrial ROS production impairs mtDNA synthesis and drives mtDNA degradation by the 3?-5?-exonuclease activity of Mip1/POLG resulting in mitochondrial genome depletion and irreversible respiratory deficiency.

Abbrivations: mtDNA: mitochondrial DNA; mtDCN: mitochondrial DNA copy number.  相似文献   

18.
Sperm mitochondria play an important role in spermatozoa because of the high ATP demand of these cells. Different mitochondrial DNA (mtDNA) mutations and haplogroups influence sperm function. The mtDNA dose also contributes to genetic variability and pathology in different tissues and organs, but nothing is known about its relevance in the performance of spermatozoa. We estimated the variability in mtDNA content within a population of men. Different mtDNA:nuclear DNA ratios were characteristic of progressive and nonprogressive spermatozoa, confirming the influence of mtDNA content on sperm functionality. We also estimated that the absolute content of mtDNA was 700 and 1200 mtDNA copies per cell in progressive and nonprogressive human spermatozoa, respectively. These results suggest that a marked increase of mtDNA copy number per cell volume takes place during spermatogenesis.  相似文献   

19.
20.
Mitochondrial DNA (mtDNA) is a multicopy, maternally inherited, genome. Individuals frequently carry a mixture of genetically distinct mtDNA molecules whose proportions may vary between sexual generations or among tissues from the same individual. Analyses of the genetic composition of mitochondria have previously relied on electron microscopy and have not permitted the genotype of single mitochondria to be determined. We have developed flow cytometry techniques to isolate single mitochondrial particles and PCR-based assays to determine the mtDNA copy number and composition of individual particles. In a first application of this method, we studied mitochondrial particles from fibroblast cells heteroplasmic for the tRNA lys(8344) point mutation, associated with myoclonus epilepsy and ragged red fiber (MERRF). Individual mitochondrial particles contained between 0 and 11 mtDNA molecules with a mean of 2.0 (95% CI 1.6-2.4). The majority (75%) of the mitochondrial particles from which a PCR product was obtained contained only one type of mtDNA, consistent with the low mean mtDNA copy number. The method developed may be applied to studies of the copy number and distribution of mtDNA genomes in different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号