首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The ultrastructure of the flagellar apparatus of aPleurochrysis, a coccolithophorid was studied in detail. Three major fibrous connecting bands and several accessory fibrous bands link the basal bodies, haptonema and microtubular flagellar roots. The asymmetrical flagellar root system is composed of three different microtubular roots (referred to here as roots 1,2, and 3) and a fibrous root. Root 1, associated with one of the basal bodies, is of the compound type, constructed of two sets of microtubules,viz. a broad sheet consisting of up to twenty closely aligned microtubules, and a secondary bundle made up of 100–200 microtubules which arises at right angles to the former. A thin electron-dense plate occurs on the surface of the microtubular sheet opposite the secondary bundle. The fibrous root arises from the same basal body and passes along the plasmalemma together with the microtubular sheet of root 1. Root 2 is also of the compound type and arises from one of the major connecting bands (called a distal band) as a four-stranded microtubular root and extends in the opposite direction to the haptonema. From this stranded root a secondary bundle of microtubules arises at approximately right angle. Root 3 is a more simple type, composed of at least six microtubules which are associated with the basal body. The flagellar transition region was found to be unusual for the classPrymnesiophyceae. The phylogenetic significance of the flagellar apparatus in thePrymnesiophyceae is discussed.  相似文献   

2.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

3.
Peranema trichophorum (Ehrenberg) Stein, a colorless phagotrophic euglenoid flagellate, has a typically euglenoid microtubular root complement. Striated root components, relatively uncommon in euglenoids, are connected to the basal bodies and to a microtubular root. The flagellar system of Peranema consists of three unequal microtubular roots which extend anteriorly beneath the reservoir membrane, and narrow-band striated roots (periodicity = 29–33 nm) which connect one of the four basal bodies to the movable rodorgan of the feeding apparatus. An inter basal body striated fiber forms a three-way connection between one particular microtubular root, a flagellar basal body, and the striated roots. A striated fibril (periodicity = 18–25 nm), which may be an extension of the striated root system, extends beneath the reservoir membrane. Associated with the striated fibril and the striated roots are cisternae of smooth endoplasmic reticulum.  相似文献   

4.
The ultrastructure of Hymenomonas coronata Mills was reinvestigated to determine the microarchitecture of the flagellar apparatus. Cell morphology and flagellar apparatus structure are very similar to those of Pleurochrysis. Some important variations occur. First, a crystalline root (= compound root) is absent on microtubular root 1. Second, a two-stranded microtubular root emanates at a right angle from microtubular root 2. Third, a fibrous root emanates from the dorsal region between the basal bodies and extends to the cell's right, paralleling microtubular root 3. These similarities and variations in flagellar apparatus characters are discussed in reference to known variations in the Prymnesiophyta.  相似文献   

5.
The absolute configuration of the flagellar apparatus in Cryptomonas ovata has been elucidated and found to be similar to that reported for Chilomonas paramecium. Variations apparent in the flagellar apparatus of Cryptomonas ovata include the presence of striations in the mitochondrion associated lamella, a rhizostyle which does not bear wing-like extensions from the microtubules and does not lie close to the nucleus, and a striated fibrous anchoring structure associated with one basal body which has not hitherto been described. The flagellar apparatus also includes a four stranded microtubular root which traverses into the anterior dorsal lobe of the cell, a striated fibrous root which is associated with a five stranded microtubular root, and a two stranded Cr root. The homologous nature of these roots to those in the larger cryptomonads is discussed in relation to the apparent reduction in flagellar apparatus size and complexity among the smaller cryptomonads. A diagrammatic reconstruction of the flagellar apparatus of Cryptomonas ovata is also presented.  相似文献   

6.
The detailed structure of the flagellar apparatus has been determined in a small dinoflagellate of the genus Gymnodinium. Although diminutive, this dinoflagellate possesses a complex flagellar apparatus consisting of a posteriorly directed microtubular root, a transverse striated fibrous root, several striated fibrous connectives that attach the basal bodies to one another as well as to the different roots, and a conspicuous non-striated fibrous connective that directly links the posteriorly directded microtubular root with the extended lobe of the nucleus. This represents the second discovery of a nuclear connective linked to the flagellar apparatus in the Dinophyceae but is the first report to elucidate the spatial relationships of the connective with the flagellar apparatus and the cell. A detailed diagrammatic reconstruction is provided and the similarities between these flagellar apparatus features are compared with those known for other dinoflagellates. Additionally, the structure and displacement of the nuclear connective are compared with nuclear connectives described in other protists.  相似文献   

7.
The three-dimensional structure of the flagellar apparatus in Woloszynskia sp. was determined. This recently discovered dinoflagellate possesses two basal bodies that are offset from one another and lie at an angle of approximately 110°. The transverse basal body is associated with a striated fibrous root assemblage that consists of two differently staining fibrous portions with identical striation periodicity. Unlike the transverse striated fibrous roots reported in other dinoflagellates, this assemblage extends to the cell's right beyond the proximal end of the transverse basal body. The striated fibrous root complex is attached to the anterior end of the longitudinal microtubular root by a broad striated fibrous connective. The longitudinal basal body is also associated with the longitudinal microtubular root. The flagellar opening of each emerging axoneme is surrounded by a striated collar. The striated collars are linked to one another by a striated fibrous, striated collar connective. The variations and similarities of the flagellar apparatus and the ventral ridge/striated collar connective in Woloszynskia sp. are compared to similar components in other dinoflagellates.  相似文献   

8.
The flagellar apparatus of the marine dinoflagellate Amphidinium rhynchocephalum Anissimowa was examined using the techniques of rapid freezing/freeze substitution and serial thin section three dimensional reconstruction. The flagellar apparatus is composed of two basal bodies that are offset from one another and lie at an angle of approximately 150° The transverse basal body is associated with two individual microtubules that extend from the proximal end of the basal body toward the flagellar opening. One of these microtubules is closely appressed to a striated fibrous root that also extends from the proximal base of the transverse basal body. The longitudinal basal body is associated with a nine member microtubular root that extends from the proximal end of the basal body toward the posterior of the cell. The longitudinal microtubular root and the transverse striated fiber are connected by a striated connective fiber. In addition to the microtubules associated with the transverse and longitudinal basal bodies, a group of microtubules originates adjacent to one of the transverse flagellar roots and extends into the cytoplasm. Vesicular channels extend from the flagellar openings to the region of the basal bodies where they expand to encompass the various connective structures of the flagellar apparatus. The possible function and evolutionary importance of these structures is discussed.  相似文献   

9.
The ultrastructure of the flagellar apparatus in the quadriflagellate zoospores ofUlva lactuca was examined. The two L-shaped pairs of basal bodies are arranged in mirror image relation. Two apical capping plates connect adjacent basal bodies of different pairs with each other. The flagellar root system is cruciate and exhibits a microtubular part (4-2-4-2 system) and a complex and elaborate fibrillar part. The latter consists of two striated fibres (striation pattern 32 nm) closely associated with the two-stranded roots and four differently patterned fibres (striation pattern 150–160 nm) which are more internally located and run parallel to all four microtubular roots. The presence of four microtubular roots and six striated fibres is at present not known for any other green alga and taxonomic implications are discussed.  相似文献   

10.
M. Melkonian 《Protoplasma》1979,98(1-2):139-151
Summary The ultrastructure of the freshwater flagellateTetraselmis cordiformis Stein (Chlorophyceae) was investigated. The general morphology could be described as typical prasinophycean (Prasinophyceae sensu Christensen) and the organism shares all generic characteristics ofPlatymonas West. The flagellar apparatus has been examined in detail. The four flagella emerge from an apical trough in the theca and are arranged in a zig-zag row. They are covered by three types of scales. Four cruciate flagellar roots of compound type are present. One part is microtubular (4-2-4-2 system) and the other prominent part is fibrillar with distinctive cross striations. The four roots are short and terminate at the bottom of the apical through, where they attach the flagellar apparatus to the theca. The four-stranded root shows no changes in root tubule configuration. In addition to the cruciate root system there are two massive rhizoplasts. The rhizoplasts exhibit different striation patterns along their length. Taxonomic implications and flagellar root system structure as it relates to current theories of evolution in green algae are discussed.  相似文献   

11.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

12.
The ultrastructure of the flagellar apparatus in the biflagellate female gametes of the green algaBryopsis lyngbyei has been studied in detail. In the flagellum and basal body, microtubule septations occur in some of the B-tubules. The transition region of the flagellum is extremely long (260–290 nm), exhibits a stellate pattern in cross section but lacks the transverse diaphragm. The two basal bodies form an angle of 180° and overlap at their proximal ends. They are connected by a compound non-striated capping plate. Terminal caps associated with the capping plate partially close the proximal end of each basal body. A cruciate flagellar root system with three different types of microtubular roots is present, i. e. the flagellar apparatus does not show 180° rotational symmetry. One root type contains 2 microtubules which are connected to an elaborate cylindrical structure, presumably a mating structure. The opposite root exhibits 3 microtubules over its entire length and is not associated with a cylindrical structure. In their proximal parts both roots are linked to an underlying crescent body. The other two microtubular roots are probably identical and consist of 4 (or 5) microtubules which show configurational changes. These two identical roots insert into the capping plate and link to the inner side (i. e. the side adjacent to the other basal body) of each basal body, whereas the other two roots attach to the outer sides of each basal body. System I striated fibres are probably associated with each of the four roots, while system II fibres have not been observed. The flagellar apparatus of female gametes ofB. lyngbyei shows many unique features but in some aspects resembles that of ulvalean algae. Functional and phylogenetic aspects of cruciate flagellar root systems in green algae are discussed.  相似文献   

13.
The major components of the internal flagellar apparatus of Chilomonas paramecium Ehr. are two large microtubular roots and a striated root paralleled by three microtubules. The two microtubular roots overlap at the basal bodies. One microtubular root follows a curved path in the anterior of the cell, and the other extends straight to the posterior passing through a groove in the nucleus. The striated root extends laterally from the basal bodies. Except that it is smaller, the posteriorly directed root bears a strong resemblance to the axostyle of oxymonads. The overall arrangement and structure of the flagellar roots is similar to the pelta, axostyle and costa of trichomonads and the pelta and axostyle of oxymonads, groups of mitochondrion-less, largely parasitic or symbiotic protozoans. An affinity between cryptomonads and oxymonads or trichomonads would have many phylogenetic implications, some of which are discussed.  相似文献   

14.
The flagellar apparatus of Urospora penicilliformis (Roth) Aresch. is unique, or at least very unusual among green algae. The flagellar axonemes are rigid, and contain wing-like projections. There are no central microtubules in the most proximal part of the axoneme. The transition region contains a series of electron dense transverse lamellae rather than a single septum, and lacks a stellate pattern. There is no cartwheel pattern in the proximal part of the basal bodies. The latter are associated with four different types of fibrous elements: ascending striated fibers that attach to an electron dense plate in the papillar center, lateral striated fibers that parallel microtubular roots, fibrous elements that link adjacent basal bodies, and finally two massive striated fibers that descend into the cell, passing closely along the nucleus (system II fibers, or rhizoplasts). Each of the four microtubular flagellar roots is sandwiched between two system I striated structures. The roots are probably equal; they contain proximally four, and distally up to eight microtubules. Based on the zoospore flagellar apparatus, it is concluded that the multinucleate U. penicilliformis is related to the Ulvaphyceae. Finally, a possible explanation in functional terms is given for the peculiar external morphology and behavior of the zoospore.  相似文献   

15.
The ultrastructure of the flagellar apparatus ofMesostigma viride Lauterborn (Prasinophyceae) has been studied in detail with particular reference to absolute configurations, numbering of basal bodies, basal body triplets and flagellar roots. The two basal bodies are interconnected by three connecting fibers (one distal fiber = synistosome, and two proximal fibers). The flagellar apparatus shows 180° rotational symmetry; four microtubular flagellar roots and two system II fibers are present. The microtubular roots represent a 4-6-4-6-system. The left roots (1s, 2s) consist of 4 microtubules, each with the usual 3 over 1 root tubule pattern. Each right root (1d, 2d) is proximally associated with a small, but typical multi-layered structure (MLS). The latter displays several layers corresponding to the S1 (the spline microtubules: 5–7), and presumably the S2—S4 (the lamellate layers) of the MLS of theCharophyceae. At its proximal origin (near the basal bodies) each right root originates with only two microtubules, the other spline microtubules being added more distally. The structural and positional information obtained in this study strongly suggest that one of the right roots (1d) ofMesostigma is homologous to the MLS-root of theCharophyceae and sperm cells of archegoniate land plants. Thus the typical cruciate flagellar root system of the green algae and the unilateral flagellar root system of theCharophyceae and archegoniates share a common ancestry. Some functional and phylogenetic aspects of MLS-roots are discussed.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

16.
The flagellar root system of zoospores in two species ofChlorosarcinopsis (C. minuta andC. spec.) has been studied in detail. The biflagellate zoospores show a cruciate root system, two of the four microtubular roots containing two microtubules, the other two four microtubules. The flagellar apparatus is otherwise identical with that ofChlamydomonas reinhardi as described byRingo (1967). Evidence is presented that the genusChlamydomonas is characterized by a bilateral symmetric root system (4-2-4-2) rather than a system with four equally numbered roots (i.e. 4-4-4-4). It is suggested that a root system with four identical cruciate roots is not present in any biflagellate algal cell. The taxonomic significance of cruciate root systems in green algae is discussed refering to the identical root systems ofChlorosarcinopsis andChlamydomonas.  相似文献   

17.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

18.
The flagellar apparatus of an undescribed species of Chrysochromulina Lackey that bears “eyelash” scales is reconstructed. The transitional region consists of two transitional plates each with an axosome, with no stellate pattern between them. Fine osmiophilic rings lie between the flagellar membrane and the outer doublets in the transitional region. The two jagella and the haptonema are inserted in a subapical depression that is lined ventrally by a spine-like projection formed by one of the parietal chloroplasts. The angles of insertion are similar to those of some other Chrysochromulina species in that both the haptonema and the right basal body lie at an extreme angle to the left basal body. The connectives of the apparatus consist of a striated distal band with a dorsal extension to the R1 and a ventral extension overlying the R2, a striated distal accessory band, an auxiliary connective from the right basal body to the adjacent ventral chloroplast, a well-developed intermediate band, two striated proximal bands, and a striated proximal accessory band. Of the microtubular roots in this Chrysochromulina species, three are associated with the left side of the cell (an R1 of 8+3; a small crystalline compound root, the R1C, associated with the R1; an R2 of three micro-tubules), and two are associated with the right basal body (an R3 of 2/2 microtubules with which the single-stranded R4 converges to form a 2/2+1 and then a 2/3 tiered arrangement). Comparisons are drawn with other species in the genus and related genera, particularly Prymne-sium.  相似文献   

19.
The fine structure of the zoospores of Urospora penicilliformis (Roth) Aresch. (Chlorophyceae) is described. Of special interest is the flagellar apparatus. The proximal part of each of the 4 flagella is ribbon-shaped and contains nine wings attached to the peripheral double tubules. The flagellar root system originates from the flagellar bases and includes striated fibrous roots, passing close to the nucleus, and cruciate nine-stranded microtubular roots along the four corners of the cell. The Golgi bodies produce numerous vesicles, concentrating apically in the cell; they are presumed to be of importance for the attachment of the zoospore.  相似文献   

20.
The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the overlying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoir-canal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号