首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A small subunit ribosomal RNA (16S-like rRNA) in the hydrocarbon-rich microalga Botryococcus braunii Kützing (Chlorophyceae) was amplified using RNA polymerase chain reaction, and its sequence was determined. The sequence data of B. braunii were analyzed with those of several other algae in order to determine phylogenetic relationships among these algae. Phylogenetic analysis indicated B. braunii to be a member of the Chlorophyta and possibly related to Characium vacuolatum and Dunaliella parva.  相似文献   

2.
The complete small subunit ribosomal nuclear gene (ssu rDNA) sequence was determined for nine species of Gracilaria and one species of Gracilariopsis which are common on the American Atlantic waters. The sequences were aligned using the secondary structure as reference, including the published sequences of nine other species of Gracilariaceae. A matrix of 1736 sites was constructed with a proportion of 91% invariable sites and very few assumed indels events. All the inferred trees show three main lineages: 1) the strongly divergent lineages of Gracilariopsis; 2) the austral genera Curdiea / Melanthalia; and 3) the lineage of Gracilaria sensu stricto. The later encompasses the following groups: 1) Gracilaria chilensis from the Pacific ocean; 2) a group of cylindrical tropical species with "henriquesiana" spermatangial type; 3) a group of warm temperate cylindrical species with "verrucosa" spermatangial type; and 4) a group of flattened tropical species with mainly "textorii" spermatangial type. The relationship of a species described as Gracilaria pauciramosa from Venezuela was not inequivocally solved. The inferred phylogenetic groups are congruent with morphology and quality of agar.  相似文献   

3.
We sequenced the small subunit rDNA and internal transcribed spacer region of Gracilariaceae from the tropical Atlantic and Pacific, with emphasis on flattened or compressed species. Sequence comparisons confirmed three main lineages of Gracilariaceae: Curdiea/Melanthalia, Gracilariopsis/Gracilariophila, and Gracilaria. The Curdiea/Melanthalia diverged early in the family. Gracilariopsis was paraphyletic, because at least one Gracilariophila species evolved from it. The Atlantic Gracilariopsis were monophyletic and separated from the Pacific lineages. The Gracilaria included all species referable to its own species and to Hydropuntia, which was paraphyletic, formed by distantly related lineages. The new combination Gracilaria pauciramosa (N. Rodríguez Ríos) Bellorin, M. C. Oliveira et E. C. Oliveira is proposed for Polycavernosa pauciramosa N. Rodríguez Ríos. Recognition of subgenera within Gracilaria, based on spermatangial arrangement, was not supported. Instead, infrageneric groups were delineated by geographic origins and combinations of reproductive characters. Most Pacific species with either “textorii” or “verrucosa” type spermatangia were deeply separated from Atlantic species. Within the Atlantic Gracilaria, a lineage encompassing mostly tropical cylindrical species with “henriquesiana” type spermatangia and distinctive cystocarp anatomy was recognized. A lineage was also retrieved for cold water stringy species with verrucosa type spermatangia. Several species from the western Atlantic are closely related to Gracilaria tikvahiae McLachlan with nearly identical morphology. On the other hand, most flattened species from the tropical Atlantic were closely related despite their diverse morphologies. The interpretation of our data in addition to the literature indicates that more populations from the Indo‐Pacific must be studied before a general picture of Gracilariaceae evolution can be framed.  相似文献   

4.
The small subunit ribosomal RNA (SSU rRNA) gene was amplified from 15 species of the red alga Porphyra and digested with restriction enzymes to generate data for species identification. The subset of species selected for phylogenetic analysis was P. cuneiforms (Setchell et Hus) Krishnamurthy, P. nereocystis anderson, P. schizophylla Hollenberg et Abbott, P. thuretii Setchell et Dawson and Porphyra 1674. Bangia sp. was used as an out-group. Restriction sites were mapped and used as characters in parsimony and maximum likelihood analysis. The phylogenetic hypotheses generated were compared statistically to possible alternative phylogenies based on traditional morphological taxonomic characters. The results indicate that the current subgenera in Porphyra do not represent monophyletic groups and that traditional morphological and ecological taxonomic characters alone may not be adequate for definitive species identification and cannot be relied on as an indication of Porphyra have large insertions in the SSU gene that are apparently splicesd from the final SSU rRNA molecule. The possible character, distribution and potential significance of these putative introns are discussed.  相似文献   

5.
Despite their evolutionary and ecological importance, dinoflagellate phylogeny remains poorly resolved. Here we explored the utility of mitochondrial cytochrome b (cob) in inferring a dinoflagellate tree and focused on resolving the relationship between fucoxanthin‐and peridinin‐containing taxa. Trees were inferred using cob and small subunit rDNA alone or in combination as concatenated data and including members of the six major dinoflagellate orders. Many regions of the cob DNA or protein and rDNA trees were congruent with support for the monophyly of Symbiodinium spp. Freudenthal and of the Prorocentrales and the early divergence of Crypthecodinium cohnii Seligo in Grasse. However, these markers provided differing support for the monophyly of Pfiesteria spp. Steidinger et Burkholder (only supported strongly by rDNA) and of the fucoxanthin dinoflagellates with Akashiwo sp. (Hirasaka) Hansen et Moestrup (Gymnodiniales, only supported strongly by the cob data). The approximately unbiased (AU) test was used to assess these results using 13‐and 11‐taxon (excluding apicomplexans) backbone maximum likelihood trees inferred from the combined cob+rDNA data. The AU test suggested that our data were insufficient to resolve the phylogenetic position of Symbiodinium spp. and that the ancestral position of C. cohnii might have resulted from long‐branch attraction to the apicomplexan outgroup. We found significant support, however, for the association of fucoxanthin dinoflagellates with Akashiwo sp. The monophyly and relatively derived position of the Gymnodiniales in our cob DNA and protein trees and in the cob+rDNA tree is consistent with the tertiary endosymbiotic origin of the plastid in fucoxanthin dinoflagellates.  相似文献   

6.
Partial 16S ribosomal RNA sequences from five marine oscillatoriacean strains with narrow trichomes were determined by a dideoxynucleotide-termination method. A phenogram was constructed by a distance matrix method including a bootstrap analysis. In addition, a consensus tree was built using cladistic analysis. The results were largely congruent and indicate that the five strains belong to two different lineages. The first lineage groups four phycoerythrin-producing strains with the strain PCC7375 (“Phormidium ectocarpi Gomont”). The second cluster groups strain PCC7105 (“Oscillatoria williamsii Drouet”) with the previously studied strain Microcoleus 10mfx. Comparisons to morphological data are made and the taxonomic level of the separations is estimated.  相似文献   

7.
氮磷水平对龙须菜生长和光合特性的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
研究不同营养盐条件对龙须菜(Gracilaria lemaneiformis)的生理效应, 对深入了解龙须菜与近海环境的相互作用具有重要意义。在低氮低磷(LNLP)、低氮高磷(LNHP)、高氮低磷(HNLP)和高氮高磷(HNHP) 4种营养盐条件下培养龙须菜15 d, 以探讨不同氮、磷水平对龙须菜生长和光合特性的影响。结果表明: 1) LNHP、HNLP和HNHP处理促进了龙须菜的生长, 其中HNHP处理下龙须菜具有最大的相对生长速率和生物量; 2) LNHP、HNLP和HNHP处理提高了龙须菜的光合无机碳利用能力, 其中HNHP处理下龙须菜具有最大的无机碳饱和光合速率和表观半饱和常数, 比LNLP处理分别提高了118%倍和48.71%; 3) LNHP、HNLP和HNHP处理显著影响龙须菜的光化学效率, 与LNLP处理相比, LNHP处理提高了龙须菜的光化学效率, 而HNLP和HNHP处理降低了龙须菜的光化学效率。研究结果表明, HNHP处理条件下, 龙须菜的生长和光合无机碳利用能力最高, 光化学效率最低。  相似文献   

8.
Small subunit rDNA sequences of 42 taxa belonging to 10 genera were used to infer phylogenetic relationships among euglenoids. Members of the phototrophic genera Euglena, Phacus, Lepocinclis, Colacium, Trachelomonas, and Strombomonas plus the osmotrophs Astasia longa, Khawkinea quartana, and Hyalophacus ocellatus were included. Six major clades were found in most trees using multiple methods. The utility of Bayesian analyses in resolving these clades is demonstrated. The genus Phacus was polyphyletic with taxa sorting into two main clades. The two clades correlated with overall morphology and corresponded in large part to the previously defined sections, Pleur‐ aspis Pochmann and Proterophacus Pochmann. Euglena was also polyphyletic and split into two clades. In Bayesian analyses species with less plastic pellicles and small disk‐like chloroplasts diverged at the base of the tree. They grouped into a single clade which included the two Lepocinclis spp., which also are rigid and bear similar chloroplasts. The metabolic Euglena species with larger plastids bearing pyrenoids and paramylon caps arose near the top of the tree. The loricates Strombomonas and Trachelomonas formed two well‐ supported, but paraphyletic, clades. The strong support for the individual clades confirmed the value of using lorica features as taxonomic criteria. The separation of the osmotrophic species A. longa, K. quartana, and H. ocellatus into different clades suggested that the loss of the photosynthetic ability has occurred multiple times.  相似文献   

9.
The mode of division of vegetative cells, formation of spermatangial parent cells, initiation of the carpogonial branch apparatus, and formation of tetrasporangial initials are homologous developmental processes that are documented for the first time in the type species of the economically important family Gracilariaceae, Gracilaria verrucosa (Hudson) Papenfuss from the British Isles. G. verrucosa is characterized by a supporting cell of intercalary origin that bears a 2-celled carpogonial branch flanked by two sterile branches, direct fusion of cells of sterile branches onto the carpogonium, formation of an extensive carpogonial fusion cell through the incorporation of additional gametophytic cells prior to gonimoblast initiation, gonimoblast initials produced from fusion cell lobes, schizogenous development of the cytocarp cavity, inner gonimoblast cells producing tubular nutritive cells that fuse with cells of the pericarp or floor of the cystocarp, absence of cytologically modified tissue in the floor of the cystocarp, and carposporangial initials produced in clusters or irregular chains. Spermatangial parent cells are generated in flaments from intercalary cortical cells that line an intercellular space forming a ‘pit’ or ‘conceptacle’. Tetrasporangial initials are transformed from terminal cells derived through division of an outer cortical cell. Tetrasporangia are cruciately divided. The Gracilariaceae is removed from Gigartinales and transferred to the new order Gracilariales. Their closest living relatives appear to be agarophytes belonging to the Gelidiales and Ahnfeltiales.  相似文献   

10.
Phylogenetic relationships among 69 species of the Ceramiales (51 Ceramiaceae, six Dasyaceae, seven Delesseriaceae, and five Rhodomelaceae) were determined based on nuclear SSU rDNA sequence data. We resolved five strongly supported but divergent lineages among the included Ceramiaceae: (i) the genus Inkyuleea, which weakly joins other orders of the Rhodymeniophycidae rather than the Ceramiales in our analyses; (ii) the tribe Spyridieae, which is sister to the remainder of the included ceramialean taxa; (iii) the subfamily Ceramioideae, weakly including the tribe Warrenieae; (iv) the subfamily Callithamnioideae; and (v) the subfamily Compsothamnioideae, which emerges as sister to the Dasyaceae/Delesseriaceae/Rhodomelaceae complex, thus rendering the Ceramiaceae sensu lato unequivocally paraphyletic, as has been argued separately on anatomical grounds by Kylin and Hommersand. Our data support a restricted concept of the Ceramiaceae that includes only one of the five lineages (Ceramioideae) that we have resolved. In addition to failing to ally with the Ceramiales in our molecular analyses, species of Inkyuleea differ substantially from other Ceramiaceae sensu lato in details of pre‐ and postfertilization development. The genus Inkyuleea is here assigned to the Inkyuleeaceae fam. nov., which we provisionally retain in the Ceramiales. Species of Spyridia also differ from the remaining Ceramiaceae in their postfertilization development, and, in light of our molecular data, the genus Spyridia is assigned to the Spyridiaceae. The Callithamnioideae is strongly monophyletic (100% in all analyses), which, in combination with key anatomical differences, supports elevation to family status for this lineage as the Callithamniaceae. Similarly, the Compsothamnioideae is solidly monophyletic in our molecular trees and has a unique suite of defining anatomical characters that supports family status for a complex that we consider to include the tribes Compsothamnieae, Dasyphileae, Griffithsieae, Monosporeae, Ptiloteae, Spermothamnieae, Sphondylothamnieae, Spongoclonieae, and Wrangelieae, for which the reinstated family name Wrangeliaceae is available.  相似文献   

11.
Eighteen new 16S rDNA and 16 new 18S rDNA sequences from 24 strains, representing 23 species of photoautotrophic euglenoids, were obtained in nearly their entire length. Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses were performed on separate data (39 sequences of 16S rDNA and 58 sequences of 18S rDNA), as well as on combined data sets (37 sequences). All methods of sequence analysis gave similar results in those cases in which the clades received substantial support. However, the combined data set produced several additional well‐supported clades, not encountered before in the analyses of green euglenoids. There are three main well‐defined clades (A, B/C/D, and G) on trees from the combined data set. Clade G diverges first, while clades A and B/C/D form sister groups. Clade A consists of Euglena species sensu stricto and is divided into three sub‐clades (A1, A2, and A3). Clade A3 (composed of E. deses and E. mutabilis) branches off first; then, two sister clades emerge: A1 (composed of E. viridis‐like species) and A2 (consisting of E. agilis and E. gracilis species). Clade B/C/D consists of the Strombomonas, Trachelomonas, Cryptoglena, Monomorphina, and Colacium genera. Clade G comprises Phacus and Lepocinclis, as well as the Discoglena species of Euglena, with Discoglena branching off first, and then Phacus and Lepocinclis emerging as sister groups.  相似文献   

12.
Sequence data are presented for approximately 85% of the nuclear large subunit (LSU) rDNA gene for one member of the Bangiophyceae and 47 members of the Florideophyceae, the latter representing all but one of the currently recognized florideophyte orders. Distance, parsimony, and maximum likelihood analyses of these data were used to generate phylogenetic trees, and bootstrap resampling was implemented to infer robustness for distance and parsimony results. LSU phylogenies were congruent with published nuclear small subunit (SSU) rDNA results in that four higher level florideophyte lineages were resolved: lineage 1, containing the order Hildenbrandiales; lineage 2, recovered only under distance analysis, composed of the orders Acrochaetiales, Balliales, Batrachospermales, Corallinales, Nemaliales, Palmariales, and Rhodogorgonales; lineage 3, containing the Ahnfeltiales; and lineage 4, composed of the orders Bonnemaisoniales, Ceramiales, Gelidiales, Gigartinales, Gracilariales, Halymeniales, Plocamiales, and Rhodymeniales. Analyses were also performed on a combined LSU–SSU data set and an SSU-only data set to account for differences in taxon sampling relative to published studies using this latter gene. Combined LSU–SSU analyses resulted in phylogenetic trees of similar topology and support to those obtained from LSU-only analyses. Phylogenetic trees produced from SSU-only analyses differed somewhat in particulars of branching within lineages 2 and 4 but overall were congruent with the LSU-only and combined LSU–SSU results. We close with a discussion of the phylogenetic potential that the LSU has displayed thus far for resolving relationships within the Florideophyceae.  相似文献   

13.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

14.
The sequence data from the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase ( rbc L) gene and 18S ribosomal DNA (small subunit) of taxa in the freshwater rhodophyte order Batrachospermales were used to construct phylogenetic hypotheses. Taxa examined in this study represent four families, eight genera, and six sections of the genus Batrachospermum . In addition, Rhododraparnaldia oregonica Sheath, Whittick et Cole, was included in the analysis because it shares particular ultrastructural, reproductive, and morphological characteristics with members of the Batrachospermales and Acrochaetiales. The trees generated from each gene, as well as a combined data set, were largely congruent. Rhododraparnaldia consistently occurs on an early branch within the Acrochaetiales – Palmariales clade and does not appear to be a member of the Batrachospermales. In addition, Thorea violacea Bory de St. Vincent was not closely related to the other taxa of the Batrachospermales in all trees and hence the family Thoreaceae does not appear to be a natural grouping within this order. All other taxa analyzed, which are presently classified within this order, formed a monophyletic clade in most analyses. Psilosiphon scoparium Entwisle was not closely allied with the taxa of the Lemaneaceae, lending support to the newly proposed family Psilosiphonaceae. Sequence data from the remaining taxa of the Lemaneaceae support the concept of a derived monophyletic clade. The genus Batrachospermum appears to comprise many morphologically similar but distantly related taxa, which will need further investigation to resolve their taxonomic status. Tuomeya, Sirodotia and Nothocladus are retained at the generic level until further data are obtained.  相似文献   

15.
利用28S rDNA D1部分基因序列对直突摇蚊亚科代表性属级阶元进行了分子系统学研究。测定了12个内群属和2种外群的28SrDNAD1片段,并结合GenBank中3个同亚科种类该基因的同源序列进行了分析。采用2种建树方法(距离邻近法NJ和最大俭约法MP)分析了直突摇蚊亚科内属级分类单元的分子系统发育关系。结果表明,滨海摇蚊属Clunio位于系统发育树的基部,与该属营海洋生活的特殊性一致。心突摇蚊属和真开氏摇蚊属互为姐妹群,流环足摇蚊属和刀突摇蚊属互为姐妹群,此结果与基于形态学的系统发育研究相结果一致。其它属间的系统发育关系因尚无前人研究而有待做进一步研究。本研究同时证明28S rDNA D1基因片段在分析摇蚊科昆虫属级及属内阶元关系上具有一定的指导意义。  相似文献   

16.
To better assess the current state of phaeophycean phylogeny, we compiled all currently available rbc L, 18S, and 26S rDNA sequences from the EMBL/GenBank database and added 21 new rbc L sequences of our own. We then developed three new alignments designed to maximize taxon sampling while minimizing information loss due to partial sequences. Phylogenetic analyses were performed on separate and combined data sets (with and without taxa from the sister classes Tribophyceae and Phaeothamniophyceae as outgroups) using a variety of assumption sets, tree-drawing algorithms (parsimony, neighbor joining, and likelihood), and resampling methods (bootstrap, decay, jackknife). Partition homogeneity testing (PHT) by codon position within rbc L showed that all positions could be used despite mild third position saturation. PHT by gene and domain within rDNA showed that the 26S D1 and D2 regions do not enhance phylogenetic signal even when combined with the 18S. The rbc L and rDNA (excluding the 26S D1 and D2) could be combined under PHT. The topology of the combined tree was the same as that of the rbc L tree alone, but bootstrap support was consistently higher in the combined analysis, applied to more branches, and enabled the establishment of sister group relationships among six orders. Although the taxon sampling for the combination tree was lower ( n = 22) than for individual gene analyses ( n = 58 for rbc L and n = 59 for rDNA), results show that the Laminariales (previously reported) and Sphacelariales (new) are both paraphyletic. Choristocarpus tenellus (Kützing) Zanardini is the most basal phaeophyte and the Dictyotales the most basal order. In contrast, the Laminariales sensu stricto ( s.s. ) and Ectocarpales sensu lato ( s.l. ) are the most derived. For phylogenetic studies in the Phaeophyceae, rbc L has more resolving power than rDNA, though the reason for this is unclear based on the fact that both genes are highly conserved.  相似文献   

17.
Generic concepts in the economically important agarophyte red algal family Gracilariaceae were evaluated based on maximum parsimony, Bayesian likelihood, and minimum evolution analyses of the chloroplast‐encoded rbc L gene from 67 specimens worldwide. The results confirm the monophyly of the family and identify three large clades, one of which corresponds to the ancestral antiboreal genera Curdiea and Melanthalia, one to Gracilariopsis, and one to Gracilaria sensu lato, which contains nine distinct independent evolutionary lineages, including Hydropuntia. The species currently attributed to Hydropuntia comprise a single well‐supported clade composed of two distinct lineages. The two most basal clades within Gracilaria sensu lato deserve generic rank: a new genus centered around G. chilensis Bird, McLachlan et Oliveira and G. aff. tenuistipitata Chang et Xia and a resurrected Hydropuntia encompassing primarily Indo‐Pacific (G. urvillei [Montagne] Abbott, G. edulis [S. Gmelin] P. Silva, G. eucheumatoides Harvey, G. preissiana [Sonder] Womersley, and G. rangiferina [Kützing] Piccone) and western Atlantic species (G. cornea J. Agardh, G. crassissima P. et H. Crouan in Mazé et Schramm, G. usneoides [C. Agardh] J. Agardh, G. caudata J. Agardh, and G. secunda P. et H. Crouan in Mazé et Schramm). Cystocarpic features within the Gracilaria sensu lato clades appear to be more phylogenetically informative than male characters. The textorii‐type spermatangial configuration is represented in two distinct clusters of Gracilaria. The rbc L genetic divergence among the Gracilariaceae genera ranged between 8.46% and 16.41%, providing at least 2.5 times more genetic variation than does the 18S nuclear rDNA. rbc L also resolves intrageneric relationships, especially within Gracilaria sensu lato. The current number of gracilariacean species is underestimated in the western Atlantic because of convergence in habit and apparent homoplasy in vegetative and reproductive anatomy.  相似文献   

18.
The small-subunit ribosomal RNA genes (SSU rDNA) from the four symbiotic dinoflagellates, Symbiodinium corculorum Trench isolated from the bivalve mollusc Corculum cardissa (from Belau, Western Caroline Is.), S. meandrinae Trench, from the scleractinian coral Meandrina meandrites (from famaica, W.I.), Gloeodinium viscum Banaszak et al. from the hydrocoral Millepora dichotoma (from the Gulf of Aqaba), and Amphidinium belauense Trench from the acoel flatworm Haplodiscus sp. (from Belau) have been amplified by the polymerase chain reaction, cloned, and sequenced. Following alignment of these complete sequences to homologous sequences from six other dinoflagellates, eight api-complexans, six ciliates, six chromophytes and oomycetes, three ascomycetes, two rhodophytes, two chlorophytes, and two myxomycetes (with Physarum polycephalum as the outgroup), phylogenetic reconstruction was conducted using Fitch and Margoliash distance, DNA maximum likelihood, and Wagner parsimony methods, with bootstrap resampling. All methods generated trees with similar topologies. The inferred “across Kingdom” phylogeny reemphasizes previous reports that show that the dinoflagellates, the apicomplexans, and the ciliates share a common ancestry and that the dinoflagellates are distantly related to the chromophyte-oömycete lineage. The evidence supports the concept of a polyphyletic origin of dinoflagellate-invertebrate symbioses, as symbiotic dinoflagellates represent seven genera in at least four orders. The three symbiotic species, S. corculorum, S. meandrinae, and S. pilosum, consistent with their morphological and biochemical similarities, cluster most closely. Symbiodinium pulchrorum Trench, the symbiontfrom the Hawaiian sea anemone Aiptasia pulchella, is more distantly related to them. Gloeodinium viscum is not closely related to the Symbiodinium species. Amphidinium carterae (free-living) and A. belauense (symbiotic) also appear to be distantly related to Symbiodinium. Some symbionts (e.g. S. corculorum, S. pilosum) from distant geographic locations (the Indo-Pacific and Caribbean, respectively) were found to be very closely related, whereas S. pulchrorum and S. corculorum from the Pacific were found to be distantly related. Analyses of 10 additional symbiotic and nonsymbiotic dinoflagellates, using partial SSU rDNA sequences to generate a tentative dinoflagellate phylogeny, indicate that members of the genus Symbiodinium cluster with most of the other (free-living) dinoflagellates in the genus Gymnodinium. The genus Amphidinium, as represented by A. carterae and A. belauense, appear to be distantly related to the other members of the Gymnodiniaceae. This analysis, combined with morphological and biochemical data, indicates that the symbionts S. pulchrorum (from Aiptasia pulchella) and S. bermudense Trench (from Aiptasia tagetes) from the Indo-Pacific and Caribbean, respectively, are very closely related but are not identical.  相似文献   

19.
Cladistic analysis of nuclear-encoded rRNA sequence data provided us with the basis for some new hypotheses of relationships within the green algal class Ulvophyceae. The orders Ulotrichales and Ulvales are separated from the clade formed by the remaining orders of siphonous and siphonocladous Ulvophyceae (Caulerpales, Siphonocladales /Cladophorales [S/C] complex, and the Dasycladales), by the Chlorophyceae and Pleurastrophyceae. Our results suggest that the Ulvophyceae is not a monophyletic group. Examination of inter- and intra-ordinal relationships within the siphonous and siphonocladous ulvophycean algae revealed that Cladophora, Chaetomorpha, Anadyomene, Microdictyon, Cladophoropsis and Dictyosphaeria form a clade. Thus the hypothesis, based on ultrastructural features, that the Siphonocladales and Cladophorales are closely related is supported. Also, the Caulerpales is a monophyletic group with two lineages; Caulerpa, Halimeda, and Udotea comprise one, and Bryopsis and Codium comprise the other. The Dasycladales (Cymopolia and Batophora) also forms a clade, but this clade is not inferred to be the sister group to the S/C complex as has been proposed. Instead, it is either the sister taxon to the Caulerpales or basal to the Caulerpales and S/C clade The Trentepohliales is also included at the base of the siphonous and siphonocladous ulvophycean clade. The Pleurastrophyceae, which, like the Ulvophyceae, posses a counter-clockwise arrangement of flagellar basal bodies, are more closely related to the Chlorophyceae than to the Ulvophyceae based on rRNA sequences. Thus, the arrangement of basal bodies does not diagnose a monophyletic group. Previously reported hypotheses of phylogenetic relationships of ulvophycean algae were tested. In each case, additional evolutionary steps were required to obtain the proposed relationships. Relationships of ulvophycean algae to other classes of green algae are discussed.  相似文献   

20.
Radioactively labeled ribosomal RNA from seven species of algae was purified and hybridized to purified DNA from Chlamydomonas reinhardtii Dangeard (Chlorophyta). Delta Tm values for the heterologous RNA-DNA duplexes were obtained by thermal dissociation; values ranged from 3.9 to 10.9 C. Organisms traditionally considered to be less closely related to C. reinhardtii showed the greatest delta Tm values. Ulothrix fimbriata Bold and Klebsormidium flaccidum (Kütz.) S., M. & Bl., although similar morphologically, showed very different delta Tm values and would not appear to be closely related by these criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号