首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyun JH 《Microbial ecology》2006,52(2):244-252
Shipboard enrichment incubation experiments were performed to elucidate the limiting resources for heterotrophic prokaryotic production and to discuss the potential impact of bottom water and sediment discharges in relation to manganese (Mn) nodule exploitation on the heterotrophic prokaryotes in the oligotrophic northeast equatorial Pacific. Compared to an unamended control, the production of heterotrophic prokaryotes increased 25-fold in water samples supplemented with amino acids (i.e., organic carbon plus nitrogen), whereas the production increased five and two times, respectively, in samples supplemented with either glucose or ammonium alone. These results indicate that heterotrophic prokaryote production in the northeast equatorial Pacific was co-limited by the availability of dissolved organic carbon and inorganic nitrogen. In samples from the nutrient-depleted surface mixed layer (10-m depth), the addition of a slurry of bottom water and sediment doubled heterotrophic prokaryote production compared to an unamended control, whereas sonicating the slurry prior to addition quadrupled the production rate. However, little difference was observed between an unamended control and slurry-amended samples in the subsurface chlorophyll a (Chl a) maximum (SCM) layer. Thus, the impact of slurry discharge is more significant at the nutrient-depleted surface mixed layer than at the high-nutrient SCM layer. The greatly enhanced prokaryote production resulting from the addition of sonicated slurry further suggests that dissociated organic carbon may directly stimulate heterotrophic prokaryote production in the surface mixed layer. Overall, the results suggest that the surface discharge of bottom water and sediments during manganese nodule exploitation could have a significant environmental impact on the production of heterotrophic prokaryotes that are currently resource limited.  相似文献   

2.
Molecular surveys of marine picoeukaryotes have revealed a large number of sequences unrelated to cultured organisms, such as those forming the marine stramenopile (MAST)-4 clade. Recent FISH (fluorescent in situ hybridization) data have shown that MAST-4 cells are uncultured heterotrophic flagellates of 2–3 μm in size that have a global distribution in non-polar marine waters. However, FISH is time-consuming and hard to apply to the many samples generated during oceanographic cruises, so we developed a real-time quantitative polymerase chain reaction (Q-PCR) protocol to determine rapidly the abundance of this group using environmental DNA. We designed a primer set targeting the 18S rRNA genes (rDNA) of MAST-4 and optimized and calibrated the Q-PCR protocol using a plasmid with the target sequence as insert. The Q-PCR was then applied to quantify MAST-4 rDNA molecules along three marine transects, longitudinal in the Indian Ocean, latitudinal in the Drake Passage and coastal–offshore in the Mediterranean Sea, and to a temporal study in a Mediterranean Sea coastal station. MAST-4 was detected in all samples processed (averaged abundances between 500 and 1000 rDNA molecules ml−1) except in mesopelagic and Antarctic samples, where it was virtually absent. In general, it was more abundant in the coast than offshore and in the deep chlorophyll maximum than at surface. A comparison of Q-PCR and FISH signals in well-controlled microbial incubations indicated that MAST-4 cells have around 30 copies of the rDNA operon. This Q-PCR assay quickly yielded quantitative data of uncultured MAST-4 cells and confirmed their wide distribution and putative ecological importance.  相似文献   

3.
Lake Van harbors the largest known microbialites on Earth. The surface of these huge carbonate pinnacles is covered by coccoid cyanobacteria whereas their central axis is occupied by a channel through which neutral, relatively Ca-enriched, groundwater flows into highly alkaline (pH ~9.7) Ca-poor lake water. Previous microscopy observations showed the presence of aragonite globules composed by rounded nanostructures of uncertain origin that resemble similar bodies found in some meteorites. Here, we have carried out fine-scale mineralogical and microbial diversity analyses from surface and internal microbialite samples. Electron transmission microscopy revealed that the nanostructures correspond to rounded aragonite nanoprecipitates. A progressive mineralization of cells by the deposition of nanoprecipitates on their surface was observed from external towards internal microbialite areas. Molecular diversity studies based on 16S rDNA amplification revealed the presence of bacterial lineages affiliated to the Alpha-, Beta- and Gammaproteobacteria, the Cyanobacteria, the Cytophaga-Flexibacter-Bacteroides (CFB) group, the Actinobacteria and the Firmicutes. Cyanobacteria and CFB members were only detected in surface layers. The most abundant and diverse lineages were the Firmicutes (low GC Gram positives). To the exclusion of cyanobacteria, the closest cultivated members to the Lake Van phylotypes were most frequently alkaliphilic and/or heterotrophic bacteria able to degrade complex organics. These heterotrophic bacteria may play a crucial role in the formation of Lake Van microbialites by locally promoting carbonate precipitation.  相似文献   

4.
Summary The host-parasite relationship of HeLa M cells artificially infected with a bovine species of Mycoplasma was studied by light microscopy, transmission electron microscopy and scanning electron microscopy. The use of morphometry to quantitate some of the findings was explored. The parasites were seen in locations extracellular to the cell surface. The detection of small numbers of organisms by light microscopy was well demonstrated by use of the fluorescent antibody technique. Scanning electron microscopy proved to be an excellent method for revealing the surface details of cell-parasite morphology. Ultra-thin sections showed that the parasites are aligned mostly parallel to the plasma membrane of the host cell but separated by a gap of 10 nm. Morphometry indicated an average of 69 organisms per cell surface occupying 1.7% of the surface area. An increase of 26% in diameter of the HeLa cells, possibly as a result of infection, was observed.The authors wish to thank Christiana Ulness and Andrea Erickson for expert technical assistance and Arnold Schmidt for the operation of the scanning electron microscope. This work was supported by grants from the U.S.P.H.S.: AI 09586, AI 10743, and AI 06720  相似文献   

5.
Viruses were found to be very abundant in the top layer of the sediments of Lac Gilbert, Québec. Viruses were extracted from the sediments using pyrophosphate buffer, and viruses from the diluted extracts were pelleted onto grids and enumerated using transmission electron microscopy. Viral abundance in the sediments ranged from 6.5 × 108 to 1.83 × 1010 ml–1, which is 10- to 1,000-fold greater than the number observed in the water column. This increase corresponds well with the 100- to 1,000-fold increase in bacterial abundance in the sediments. Viral abundance differed significantly among the surface sediment samples taken at different bottom depths and among samples taken at different depths of the water column. Viral abundance also varied significantly between the oxic and anoxic zones of the water column and the sediments. The virus-to-bacteria ratio varied greatly among the different sediment sites but not among depths in the water column. Viral abundance in the water column was related to bacterial abundance and chlorophyll concentration, whereas viruses in the sediments were most abundant in sediments with high organic matter content. Elevated viral abundance and their erratic distribution in the sediments suggest that viruses might play an important role in sediment microbial dynamics. Correspondence to: Roxane Maranger  相似文献   

6.
Epifluorescence microscopy, flow cytometry, and transmission electron microscopy were used to characterize the community of red fluorescing (emission >665 nm when excited with blue light) phototrophic picoplankton (RFPP) in lakes Huron and Michigan. A population of coccoid to ovate eukaryotic cells with a mean size of 1.2 μm dominated the RFPP community in both surface and deep water samples. Abundant prochlorophyte populations were not found in any samples. Comparisons of counts with epifluorescence microscopy and flow cytometry, revealed that RFPP were adequately enumerated with standard epifluorescence microscopy. These RFPP were significant contributors to total phototrophic picoplankton abundance in both lakes Michigan (24%) and Huron (18%), with maximum seasonal abundance during the May-June period (surface mixing layer temperatures, 3-9 °C). During thermal stratification, maximum vertical abundance was found in the metalimnion/hypolimnion at the 1-5% isolumes. RFPP were only minor contributors (1-7%) to total primary production. Growth rates of RFPP measured with dilution and small inocula growth experiments ranged from 0.05-1.0 d−1. Microzooplankton grazing rates on RFPP measured with dilution experiments were similar to estimated growth rates, accounting for 52-280% of growth on any given date.  相似文献   

7.
The surface structure of the hypdrocarbon-utilizing yeast Candida tropicalis was investigated by scanning and transmission electron microscopy (SEM and TEM respectively). The sample preparation technique was based on a rapid cryofixation without any addition of cryoprotectants. In subsequently freeze-dried samples the surface structure was analysed by scanning electron microscopy. Thin sections were prepared from freeze substituted samples. Both techniques revealed hair-like structures at the surface of hydrocarbon-grown cells. The hairy surface structure of the cells was less expressed in glucose-grown cells and it was absent completely after proteolytic digestion of the cells. When cells were incubated with hexadecane prior to cyryofixation a contrast-rich region occured in the hair fringe of thin sections as revealed by TEM. Since these structures were characteristic for hexadecane-grown cells and could not be detected in glucose-grown or proteasetreated cells it was concluded that they originate from hexadecane adhering to the cell surface and are functionally related to hexadecane transport. The structure of the surface and its relation to hydrocarbon transport are discussed in view of earlier results on the chemical composition of the surface layer of the cell wall.Abbreviations SEM Scanning electron microscopy - TEM transmission electron microscopy  相似文献   

8.
Detection of an antigenic cell wall layer inHistoplasma capsulatum   总被引:1,自引:0,他引:1  
Histoplasma capsulatum yeast cells have been studied by immunoelectron microscopy using rabbit polyclonal antisera and a biotin-avidin-peroxidase detection system. An antigenic surface layer has been visualized in the cell wall of immunostained organisms. This layer was not seen in samples prepared by standard electron microscopic methods or in negative controls used with the immunocytochemical technique. Without immunostaining the cell wall ofHistoplasma appeared almost transparent. In contrast, after immunoperoxidase staining the cell wall was conspicuous, bounded by the darkly stained outer layer. This electron dense layer, appeared to be a reservoir of surface antigens that were recognized by anti-Histoplasma antibodies.Abbreviations CHHA Cystine-heart-hemoglobin agar - PBS phosphate buffered saline - Ig immunoglobulin - TBS Tris buffered saline - DAB 3,3-diaminobenzidine tetrachloride - FITC fluorescein isothiocyanate - M199 tissue culture medium 199, according to Morgan et al. (1950)  相似文献   

9.
Scanning electron microscopy reveals that the flat tongue of Platemys pallidipectoris has shallow grooves and no lingual papillae. The surface of the tongue is covered with dome-shaped bulges, each corresponding to a single cell. Short microvilli are distributed over the cell surface. Light microscopy shows a stratified cuboidal epithelium with an underlying strong connective tissue. Transmission electron microscopy indicates four layers. The basal cells of the epithelium are electron-translucent and have a large central nucleus and a cytoplasm with keratin tonofilaments. Plasma cells with abundant rough endoplasmic reticulum and mitochondria occur in the basal layer. Production of secretory granules begins in the more electron-dense intermediate layers and increases as the cells move toward the surface. The membranes of the cells of the deep intermediate layer form processes that project into relatively wide intercellular spaces. In the superficial intermediate layer, the cytoplasm of the cells contains numerous fine granules; these increase in number but not in size in more distal layers. The cells of the surface layer are electron-translucent with a round nucleus. Contents of their fine granules are secreted into the oral cavity. © 1995 Wiley-Liss, Inc.  相似文献   

10.
In the Nervion River estuary surface samples were taken from March to September 2003 at six sites covering most of the salinity range with the aim to know the biomass and taxonomic composition of phytoplankton assemblages in the different segments. Nine groups of algae including cyanobacteria, diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, chrysophytes, haptophytes, raphidophytes and cryptophytes were identified by means of a combination of pigment analysis by high-performance liquid chromatography (HPLC) and microscopic observations of live and preserved cells. Diatoms, chlorophytes and cryptophytes were the most abundant algae in terms of cells number, whereas fucoxanthin, peridinin, chlorophyll b (Chl b) and alloxanthin were the most abundant auxiliary pigments. Based on multiple regression analysis, in the outer estuary (stations 0, 1, 2 and 3) about 93% of the chlorophyll a (Chl a) could be explained by algae containing fucoxanthin and by algae containing Chl b, whereas in the rest of the estuary most of the Chl a (about 98%) was accounted for by fucoxanthin, Chl b and alloxanthin containing algae. The study period coincided with that of most active phytoplankton growth in the estuary and fucoxanthin was by far the dominant among those signature pigments. Several diatoms, chrysophytes, haptophytes and raphydophytes were responsible for fucoxanthin among identified species. Besides, dinoflagellates with a pigment pattern corresponding to chrysophytes and type 4 haptophytes were identified among fucoxanthin-bearing algae. Cryptophytes were the most abundant species among those containing alloxanthin. The maximum of Chl b registered at the seaward end in April coincided with a bloom of the prasinophytes Cymbomonas tetramitiformis, whereas the Chl b maxima in late spring and summer were accounted for by prasinophytes in the middle and outer estuary and by several species of chlorophytes in the middle and inner estuary. Other Chl b containing algae were euglenophytes and the dinoflagellate Peridinium chlorophorum. Dinoflagellates constituted generally a minor component of the phytoplankton.  相似文献   

11.
Summary The distribution of ice organisms was investigated in Fram Strait in May 1988 during the ARK V/1 expedition on RV Polarstern. Over a 3 week period the abundances of bacteria, diatoms, auto- and heterotrophic flagellates as well as various groups of meiofauna organisms were observed in the lowermost 30 cm of an ice floe. Data were obtained from three experimental fields under three different light regimes as a result of manipulations of the snow cover. The application of multivariate factor analysis on this time series data set resulted in the characterization of four succession stages of an Arctic sea ice community: 1) the diatom bottom assemblage, 2) the mixed autotrophic assemblage, 3) the mixed auto- and heterotrophic supra-bottom assemblage, and 4) the heterotrophic supra-bottom assemblage. The two most abundant meiofauna groups (Turbellaria, Ciliata) showed different preferences according to algal distribution. While turbellarians were most abundant in samples with mixed populations of diatoms and flagellates, ciliates reached their abundance maxima in samples dominated by diatoms, suggesting different prey selections. We have developed a model for the explanation of the spatial separation of auto- and heterotrophic organisms, highlighting the possible role of DOC production by ice algae and DOC transport with brine flow.  相似文献   

12.
The environmental regulation of plcoplankton distribution in the northern South China Sea was examined In winter and summer of 2004. The average abundance of Synechococcus, Prochlorococcus, and heterotrophlc bacteria was lower In winter (30, 21, and 780×10^3 cells/cm^3, respectively) than In summer (53, 85, and 1 090×10^3 cells/cm^3, respectively), but the seasonal pattern was opposite for plcoeukaryotlc phytoplankton (4 500 and 3 200 cells/cm^3 In winter and summer, respectively). Synechococcus, picoeukaryotes, and bacteria were most abundant in the nutrient-rich coastal zone and continental shelf, but Prochlorococcus was most abundant In the continental slope and open ocean. The vertical distribution of each photosynthetic group and heterotrophlc bacteria changed between the two seasons. Synechococcus populations with apparently different phycoerythrobilin content occurred at many stations In the summer. In addition, two different populations of Prochlorococcus were found: (i) small, weakly fluorescing cells in the surface layer; and (ii) larger, strongly fluorescent cells In the deep layer. The distribution pattern of photosynthetic plcoplankton and heterotrophlc bacteria depends on environmental effects and their ecophyslologlcal differences. The distribution of Synechococcus appeared to be related to nutrient availability, whereas the distribution of Prochlorococcus appeared to be limited by temperature. Synechococcus was the only plcophytoplankton with a consistent strong relationship with bacteria.  相似文献   

13.
We describe here aspects of the anatomy of two “Epulopiscium” morphotypes, unusually large bacteria that are not yet cultured and that reproduce by the internal generation of two or more vegetative daughter cells. Two morphotypes, A and B, which are enteric symbionts of several species of herbivorous surgeonfish (Acanthuridae), were collected around the Great Barrier Reef of Australia, preserved there, and later stained for light microscopy. Some samples were examined by electron microscopy. In both morphotypes, countless discrete nucleoplasms or nucleoids were found to occupy a single shallow layer just beneath the surface all around these organisms. At each end of the morphotype B cells, a membrane-bound compartment containing dense cords of chromatin was observed. When these were found at each end of growing daughter cells, no polar compartments were then found in their mother organism. Electron micrographs of sections of morphotype A symbionts show that their outermost region is composed of tightly packed coated vesicles, each surrounded by a thin, dense, spacious capsule. Near the surface of type A organisms the remains of broken vesicles, broken capsules, and a finely fibrous matrix fuse to form a fabric that serves as the cell wall. Morphotype B organisms, however, were observed to have a distinct, morphologically continuous outer wall. Received: 3 December 1997 / Accepted: 11 June 1998  相似文献   

14.
We investigated the dynamics and diversity of heterotrophic bacteria, autotrophic and heterotrophic flagellates, and ciliates from March to July 2002 in the surface waters (0–50 m) of Lake Bourget. The heterotrophic bacteria consisted mainly of “small” cocci, but filaments (>2 μm), commonly considered to be grazing-resistant forms under increased nanoflagellate grazing, were also detected. These elongated cells mainly belonged to the Cytophaga-Flavobacterium (CF) cluster, and were most abundant during spring and early summer, when mixotrophic or heterotrophic flagellates were the main bacterial predators. The CF group strongly dominated fluorescent in situ hybridization–detected cells from March to June, whereas clear changes were observed in early summer when Beta-proteobacteria and Alpha-proteobacteria increased concomitantly with maximal protist grazing pressures. The analysis of protist community structure revealed that the flagellates consisted mainly of cryptomonad forms. The dynamics of Cryptomonas sp. and Dinobryon sp. suggested the potential importance of mixotrophs as consumers of bacteria. This point was verified by an experimental approach based on fluorescent microbeads to assess the potential grazing impact of all protist taxa in the epilimnion. From the results, three distinct periods in the functioning of the epilimnetic microbial loop were identified. In early spring, mixotrophic and heterotrophic flagellates constituted the main bacterivores, and were regulated by the availability of their resources mainly during April (phase 1). Once the “clear water phase” was established, the predation pressure of metazooplankton represented a strong top-down force on all microbial compartments. During this period only mixotrophic flagellates occasionally exerted a significant bacterivory pressure (phase 2). Finally, the early summer was characterized by the highest protozoan grazing impact and by a rapid shift in the carbon pathway transfer, with a fast change-over of the main predators contribution, i.e., mixotrophic, heterotrophic flagellates and ciliates in bacterial mortality. The high abundance of ciliates during this period was consistent with the high densities of resources (heterotrophic nanoflagellates, algae, bacteria) in deep layers containing the most chlorophyll. Bacteria, as ciliates, responded clearly to increasing phytoplankton abundance, and although bacterial grazing impact could vary largely, bacterial abundance seemed to be primarily bottom-up regulated (phase 3).  相似文献   

15.
Development of ice biota in a temperate sea area (Gulf of Bothnia)   总被引:3,自引:2,他引:1  
A study of sea ice biota was carried out in the Gulf of Bothnia (northern Baltic Sea) during the winter of 1989–1990. Samples (ice cores) were taken at a coastal station at regular time intervals during the ice season. Chlorophyll a concentration, algal species distribution, bacterial numbers, and primary and bacterial production were measured. Colonization of the ice began in January when daylight was low. As the available light increased, the algae started to grow exponentially. The vertical chlorophyll a distribution changed and algal species composition and biomass changed during the season. During the initial and middle phase of colonization, ice-specific diatoms, Nitzschia frigida and Navicula pelagica, dominated the algal biomass. Nutrients (PO4 3– and NO3j) were found to be depleted during the time of algal exponential growth. The maximum algal biomass exceeded 800 g C 1–1. The primary production supplied food for heterotrophic organisms. The presence of heterotrophic organisms of different trophic levels (bacteria, flagellates, ciliates and rotifers) indicated an active microbial food web.  相似文献   

16.
1. Lake Fryxell, situated in the McMurdo Dry Valleys, Antarctica, offers the opportunity to study microbial loop processes in the absence of crustacean zooplankton and other higher organisms. This is the first study of Lake Fryxell to provide detailed temporal and vertical variations of microbial loop organisms.
2. Protozoan communities are concentrated around the chemocline (9–10 m) in Lake Fryxell. Phototrophic nanoflagellates (PNAN), heterotrophic nanoflagellates (HNAN) and ciliates formed deep maxima of 14 580, 694 and 58 cells mL−1 respectively. Although abundance and biomass at the chemocline was high, diversity of protozoa was low, Plagiocampa accounting for> 80% of the total ciliate biomass.
3. In the mixolimnion (4.5–8 m), protozoa were less abundant, but more diverse, with 24 ciliate morphotypes being identified within this region of the water column. Inter-annual variability of protozoan biomass and abundance was greater in the mixolimnion than at the chemocline due to more variable nutrient and prey concentrations.
4. Physicochemical gradients in Lake Fryxell were very stable because the perennial ice cover reduced wind driven currents. As a consequence, ciliate species occurred in distinct depth strata, Monodinium being most abundant directly beneath the ice cover, Askenasia having maximum abundance at 8 m and Plagiocampa dominating ciliate biomass at the chemocline. The lack of vertical mixing reduced seasonal successions of PNAN and ciliate species. Three cryptophyte species dominated the PNAN community at all times (>79% of total biomass).  相似文献   

17.
Microbe-mineral associations in regolith overlying granodiorite bedrock (4.6–4.9 m depth) from the Luquillo Experimental Forest, Puerto Rico, were imaged with confocal scanning laser microscopy at a novel scale of 400X magnification. After adding BacLight? stain, proportionally more surface area of minerals (quartz, biotite, and mixed opaque kaolinite/goethite) emitted fluorescence from cell-impermeant propidium iodide than from cell-permeant SYTO 9, which suggested greater coverage of minerals by extracellular DNA or DNA in non-intact cells than by intact cells. Microscopic observations of predominantly non-intact cell material in deep saprolite were consistent with the abundance of rRNA sequences related to heterotrophic bacteria in clone libraries prepared from community DNA. A few sequences were affiliated with bacteria recognized to produce siderophores, oxidize Fe(II), or fix N2. Bacterial DNA in deep regolith from two boreholes 1.5 m apart yielded libraries with high diversity and taxa specific for each borehole. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

18.
The species diversity and distribution of benthic heterotrophic flagellates in sediment samples from along the salinity gradient in the Chernaya River Estuary and from Velikaya Salma Strait (Kandalaksha Bay, the White Sea) were investigated during August 2004. One hundred and six taxa have been identified by means of phase and interference contrast light microscopy and transmission electron microscopy. The majority of observed flagellates were bacterivores. The species diversity of the following groups: choanoflagellates, euglenids, kinetoplastids, bicosoecids, chrysomonads, thaumatomonads and flagellates Incertae sedis was the highest. Ancyromonas sigmoides and Petalomonas pusilla were the most common species. The species richness was lowest in the brackish water estuarine part with salinity levels between 5 per thousand and 8 per thousand. The distribution of heterotrophic flagellates conforms to the so-called "rule of critical salinity", possessing, apparently, the same universal character for organisms of different size levels. Heterotrophic flagellate communities in these littoral sites were highly heterogeneous. The curve of "cumulative species number vs. sampling effort" is well fitted by equation S=21.17N(0.50) and unsaturated, which indicates that more intensive investigations of the heterotrophic flagellates in the White Sea should be expected to reveal more species.  相似文献   

19.
We used 16S, 18S, plastid and internal transcribed spacer (for Synechococcus strains) sequencing to quantify relative microbial abundances in water-column samples and on sediment-trap-collected particles across an environmental gradient in the California Current Ecosystem (CCE) spanning a > 60-fold range of surface chlorophyll. Most mixed-layer dominant eukaryotes and prokaryotes were consistently underrepresented on sinking particles. Diatoms were the only phototrophic taxa consistently overrepresented. Even within this class, however, one genus (Thalassiosira) was a particle-enriched dominant, while a similarly abundant species was poorly represented. Synechococcus was significantly enriched on sinking particles at only one of four sites, but clade I was disproportionately abundant on sinking particles throughout the region compared with clade IV, the euphotic-zone co-dominant. The most abundant microbes on particles across the CCE were organisms with distributional maxima close to the sediment-trap depth (rhizarians), microbes associated with metazoans or sinking particles as a nutritional habitat (certain alveolates, Gammaproteobacteria) and organisms that resist digestive degradation of their DNA (Thalassiosira, Synechococcus). For assessing taxon contributions of phytoplankton to carbon export, our results highlight the need for sequence-based quantitative approaches that can be used to integrate euphotic-zone abundances, compute rates and account for taxon differences in preservation of sequence markers through trophic processing.  相似文献   

20.
Phytoplankton assemblages in the deep chlorophyll maximum andnear-surface layers were compared at seven stations in the inshoreand offshore waters of the Mediterranean coast of Israel. Thestudy included the entire spectrum of taxonomic categories overa wide size range, comprising the nano/pico phytoplankton componentsdown to 1 µm and the larger phytoplankters consistingprimarily of diatoms and dino-flagellates. The coccolithophorids<20 µm and the monads constituted the most abundantcomponents of the phytoplankton at the deep chlorophyll maximum(DCM) and near surface layer. Certain individual species, mainlypennate diatoms and smaller dinoflagellates, seemed to adaptto the DCM to form a characteristic association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号