首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of mitochondria-rich cells were identified in the gill epithelium of the freshwater-adapted rainbow trout, Salmo gairdneri, after selective impregnation of their tubular system with reduced osmium. A first type consisted of large cells with a poorly developed and loosely anastomosed tubular system; thus, that resembled the chloride cells commonly encountered in the gill epithelium of freshwater-adapted euryhaline fishes. A second type comprised smaller cells with an extensively developed and tightly anastomosed tubular system. These never reached the basal lamina of the gill epithelium and were adjacent to chloride cells, to which they were linked by shallow apical junctions (100-200 nm); thus, they resembled accessory cells, which are currently found in the gill epithelium of seawater-adapted fishes but are usually lacking in freshwater living fishes. Transfer of the freshwater-adapted trout into seawater induced the proliferation of the tubular system in the chloride cells and the formation of lateral plasma membrane interdigitations between accessory cells and the apical portion of the chloride cells. The length of the apical junction sealing off this extended intercellular space was reduced to 20-50 nm. The tubular system of the accessory cells was not modified. The extension of the tubular system in the chloride cells of the seawater-adapted fishes indicated that, as in most euryhaline fishes, these cells have a role in the adaptation of the rainbow trout to seawater. In contrast, the function of the presumptive accessory cells in freshwater trout remains to be established.  相似文献   

2.
In order to elucidate the functional significance of accessory cells in freshwater fishes, such as the rainbow trout, which displays a poor adaptability to seawater life, a search for such cells was performed in two stenohaline freshwater fishes: the loach and the gudgeon. Accessory cells were never encountered in these species; but, in contrast, two types of chloride cells were observed consistently that strikingly resembled the alpha- and beta-cells previously described in the guppy, a freshwater-adapted euryhaline fish. The alpha-cell, a pale and elongated chloride cell, was located at the base of the secondary lamellae in close contact with the arterioarterial pillar capillary. Darker, ovoid chloride cells resembling the beta-cell were found exclusively in the interlamellar region of the primary epithelium facing the central venous sinous. The latter cells frequently formed multicellular complexes linked together by deep, narrow, apical junctions. In another experiment, a stenohaline seawater fish, the turbot, was adapted to diluted 5% saltwater and to fresh water. In seawater, the gill epithelium contained only one type of chloride cell, always associated with accessory cells. Due to numerous cytoplasmic interdigitations between the accessory cells and the apical portion of the chloride cell, there was a noticeable increase in the length of the shallow apical junction, sealing off the intercellular space between the two cell types. In 5% saltwater, there was a decrease in the number of these interdigitations and a concomitant decrease in the length of the shallow apical junction. In fresh water, chloride cells were partially or completely separated from the outside medium by modified accessory cells. It is thus concluded that accessory cells are found exclusively in fish living in seawater or preadapted to seawater and that they probably are involved in the formation and modulation of paracellular pathways for ionic excretion. In contrast, the respective roles of the two types of chloride cells observed in freshwater fishes are still to be determined.  相似文献   

3.
Gill Na+-K+-ATPase activities, haematocrits, condition factors, plasma osmolarities, cortisol, chloride and sodium concentrations were measured in sockeye salmon ( Oncorhynchus nerka ) transferred rapidly from fresh water to sea water. Comparisons were made between salmon that successfully adapted to sea water and salmon that failed to adapt. In salmon that successfully adapted to sea water there was a brief but large fluctuation in cortisol, and plasma ionic concentrations rose initially but were regulated after 24–48 h. In salmon that failed to adapt to sea water, cortisol remained elevated, haematocrit increased, plasma ionic concentrations were not regulated and the salmon became severely dehydrated and eventually died. The results are discussed with respect to physiological stress and seawater adaptation.  相似文献   

4.
Various species of teleostean fishes were adapted to fresh or salt water and their gill surface epithelium was examined using several techniques of electron microscopy. In both fresh and salt water the branchial epithelium is mostly covered by flat respiratory cells. They are characterized by unusual outer membrane fracture faces containing intramembranous particles and pits in various stages of ordered aggregation. Freeze fracture studies showed that the tight junctions between respiratory cells are made of several interconnecting strands, probably representing high resistance junctions. The organization of intramembranous elements and the morphological characteristics of the junctions do not vary in relation to the external salinity. Towards the base of the secondary gill lamellae, the layer of respiratory cells is interrupted by mitochondria-rich cells ("chloride cells"), also linked to respiratory cells by multistranded junctions. There is a fundamental reorganization of the chloride cells associated with salt water adaptation. In salt water young adjacent chloride cells send interdigitations into preexisting chloride cells. The apex of the seawater chloride cell is therefore part of a mosaic of sister cells linked to surrounding respiratory cells by multistranded junctions. The chloride cells are linked to each other by shallow junctions made of only one strand and permeable to lanthanum. It is therefore suggested that salt water adaptation triggers a cellular reorganization of the epithelium in such a way that leaky junctions (a low resistance pathway) appear at the apex of the chloride cells. Chloride cells are characterized by an extensive tubular reticulum which is an extension of the basolateral plasma membrane. It is made of repeating units and is the site of numerous ion pumps. The presence of shallow junctions in sea water-adapted fish makes it possible for the reticulum to contact the external milieu. In contrast in the freshwater-adapted fish the chloride cell's tubular reticulum is separated by deep apical junctions from the external environment. Based on these observations we discuss how solutes could transfer across the epithelium.  相似文献   

5.
To elucidate the ultrastructural modifications of the gill epithelium during smoltification, gills of the Atlantic salmon (Salmo salar) were examined by electron microscopy at three stages of this process, which were defined as follows: "parrs" were freshwater fish that had not yet started their transformation; "freshwater smolts" were freshwater fish that were ready to enter seawater; and "seawater smolts" were smolts that had been transferred from fresh water and maintained for 4 days in seawater (35%). In the gill epithelium of parrs, there were two types of chloride cells. The large chloride cells contained deeply stained mitochondria and numerous apical, irregular, dense, membrane-bound bodies that formed 77% of the chloride cell population and were distinguished easily from small chloride cells that have distinctly paler mitochondria and no dense bodies in their apical cytoplasm. In freshwater smolts, the large chloride cells formed 95% of the chloride-cell population. In contrast to the small chloride cells that were not modified, they almost doubled in size. Their tubular system developed extensively to form a tight network with regular meshes significantly smaller than those observed in parr chloride cells. Forty percent of the large chloride cells were associated with a new type of cell, the accessory cell, to which they were bound by shallow apical junctions. Half of these accessory cells were not seen to be in contact with the external medium. In seawater smolts, 80% of the large chloride cells were associated with accessory cells. Most accessory cells reached the external medium and sent numerous cytoplasmic interdigitations within the apical portion of the adjacent chloride cells. As a result, a section through the apical portion of the chloride cells and their associated accessory cells revealed a mosaic of interlocked cell processes bound together by an extended, shallow apical junction. It was concluded that the Atlantic salmon develops in fresh water most of the ultrastructural modifications of the gill epithelium which in most euryhaline fish are triggered by exposure to seawater. The effective transfer into seawater would act only as a final stimulus to achieve some adequacy between the freshwater smolt and its new environment.  相似文献   

6.
The surface ultrastructure of the gill arches of the killifish, Fundulus heteroclitus, adapted to seawater or freshwater, was found to be similar to that reported for other euryhaline teleosts. Two rows of gill filaments (about 42 filaments per row) extended posterolaterally, and two rows of gill rakers (about 10 rakers per row) extended anteromedially from each arch. Leaf-like respiratory lamellae protruded along both sides of each filament, from its base to its apex. The distributions, sizes, and numbers of various surface cells and structures were also determined. All surfaces were covered by a mosaic of pavement cells, which measured about 7 X 4 microns and exhibited concentrically arranged surface ridges. Taste buds were especially prominent on the rakers and the pharyngeal surfaces of the first and second gill arches, but were often replaced by horny spines on the third and fourth gill arches. Apical crypts of chloride cells occurred mostly on the surfaces of the gill filaments adjacent to the afferent artery of the filament. In seawater adapted killifish, crypts resembled narrow, deep holes along the borders of adjacent pavement cells, had openings of about 2 microns2, and occurred at a frequency of about 1 per 70 microns2 of surface area. In freshwater fish, the crypts usually had larger openings (about 10 microns2), occurred less frequently (1 per 123 microns2), and exhibited many cellular projections in their interiors. Changes in crypt morphology may be related to the ion transport function of chloride cells.  相似文献   

7.
Summary The effect of angiotensin infusion on the glomerular ultrastructure of freshwater- and seawater-adapted rainbow trout, Salmo gairdneri, has been examined by scanning and transmission electron microscopy. Adaptation of trout to seawater resulted in epithelial podocyte flattening, primary process broadening and apparent loss of foot processes in almost all glomeruli, features which were uncommon in freshwater-adapted trout. Similar changes were induced by infusion of freshwater-adapted animals with angiotensin, suggesting that the renin-angiotensin system plays a role in the modification of glomerular epithelial ultrastructure. Adaptation of trout to seawater also reduced glomerular diameter, but infusion of freshwater-adapted animals with angiotensin did not mirror this effect. Infusion of angiotensin into seawater-adapted animals increased the overall thickness of glomerular basement membrane by increasing the lamina rara interna and lamina densa. This did not occur when freshwater-adapted fish were either infused with angiotensin or adapted to seawater. These findings suggest that other humoral systems are involved in the control of glomerular diameter and basement membrane thickness as part of an integrated response to increased environmental salinity.  相似文献   

8.
Branchial chloride cells (CC) were studied in sea bass (Dicentrarchus labrax) maintained in seawater (SW: 35 per thousand) or gradually adapted to and subsequently maintained in fresh water (0.2 per thousand) or doubly concentrated seawater (DSW: 70 per thousand). Changes were observed in the location, number, and structure of CCs, that were discriminated by light, scanning, and transmission electron microscopy, as well as by immunofluorescence on the basis of their high Na(+)/K(+)-ATPase antigen content. The number of CCs increased in both fresh water and doubly concentrated seawater compared to control fish maintained in SW. In both experimental conditions, these cells were found on the gill filament (as in control fish) and even on the lamellae, especially in hypersaline conditions. Structural changes concerned the shapes and sizes of CCs and their apical outcrops and particularly the structures of their functional complexes (mitochondria, tubular system, and endoplasmic reticulum), which developed significantly in DSW adapted fish. The changes in the expression of the Na(+)/K(+)-ATPase were evaluated by assessing the enzyme's density at the ultrastructural level following immunogold labeling. This parameter was significantly higher in doubly concentrated seawater. The adaptative significance of the quantitative and morphofunctional changes in branchial chloride cells is discussed in relation to the original osmoregulatory strategy of this marine euryhaline teleost.  相似文献   

9.
Carbonic anhydrase (CA) activity was measured in blood and in gill tissue of coho salmon smolts during chronic exercise and subsequent transfer into seawater. The mean level of CA activity was higher in blood than gill tissue in both freshwater and seawater. CA activity in gill tissue increased significantly after the smolts had adapted to seawater. CA activity in blood decreased significantly in the group of fish given the highest exercise level after they had adapted to seawater. There were no significant differences in CA activity in gill tissue between control and exercise groups in either freshwater or seawater.  相似文献   

10.
Two types of chloride cells were identified in the gill epithelium of freshwater-adapted guppies. One type, referred to as an "alpha-chloride cell," was a pale, elongated cell located at the base of the secondary lamella in close contact with the arterioarterial pillar capillaries. In its cytoplasm, membranous tubules in continuity with its basolateral plasma membrane formed an extended tridimensional network. The vesiculotubular system (Pisam: Anat. Rec. 200:401-414, 1981) consisted of a few tubules and vesicles located next to the apical plasma membrane. A second type, referred to as a "beta-chloride cell," was a darker, ovoid cell located in the interlamellar region of the primary epithelium facing the central venous sinus. Membranous tubules in continuity with the basolateral plasma membrane were unevenly distributed in the cytoplasm. A prominent vesiculotubular system composed of numerous vesicles and tubules was found between the Golgi apparatus and the apical surface. During seawater adaptation, the alpha-chloride cells increased in size and progressively transformed into characteristic "seawater alpha-chloride cells" with a well-developed, regular, tight tubular network and numerous vesicles and tubules of the vesiculotubular system accumulated below the apical pit. The beta-chloride cells underwent a progressive degeneration and disappeared. Thus, in freshwater-adapted guppies, there are two types of chloride cells, alpha and beta, respectively, related to the arterial and the venous vessels, whereas in seawater-adapted fishes, a single type of cell, the alpha-chloride cell, was related to both the arterial and venous channels.  相似文献   

11.
Odontesthes argentinensis was collected from Mar Chiquita Coastal Lagoon, the Southernmost coastal Atlantic Lagoon of Argentina. The morphology of the gills was analyzed by scanning electron microscopy. The morphology of the superficial structures of the gill filaments and pharyngeal region of the gill arch was discussed and related to their functional aspects. The gills arches are structurally similar to those of other teleosts and bring out the osmoregulatory capacity of this species. The epithelium that covers the surface of the filaments and the pharyngeal region of the gill arch is formed by polygonal pavement cells with conspicuous microridges. These folds in the membrane are not denoted in the epithelium of the respiratory lamellae. Apical crypts of chloride cells are present on the afferent and interlamellar filament surfaces, but are absent elsewhere on the gill arch. The highest density of mucous cells is observed into the gill filament and the pharyngeal region which indicates the existence of a protective strategy of the respiratory lamellae and the pharynx. The epithelium of the gill arches and the rakers is studded with spines. There are taste buds along the whole pharyngeal region that may be associated with their participation in tasting at this zone.  相似文献   

12.
Ontogenetic changes in the location, size, density and morphology of chloride cells in the Nile tilapia Oreochromis niloticus adapted to fresh and brackish water are described using Na(+) /K(+) -ATPase immunohistochemistry, light microscopy (LM), scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). The pattern of chloride cell distribution changed during development under both treatments, with chloride cell density decreasing significantly from hatch to 7 days post-hatch, but appearing on the inner opercular area at 3 days post-hatch and increasing significantly thereafter (P < 0·05). Chloride cells were always denser in fresh- than in brackish-water larvae. In both treatments, chloride cells located on the outer operculum and tail showed a marked increase in size with age, but cells located on the abdominal epithelium of the yolk sac and the inner operculum showed a significant decrease in size (P < 0·05). Chloride cells from brackish-water adapted larvae from 1 day post-hatch onwards were always significantly larger (P < 0·05) than those from freshwater-adapted larvae. SEM revealed structural differences in chloride cell apical morphology according to environmental conditions. There appears to be clearly defined temporal staging of the appearance of adaptive mechanisms that confer an ability to cope with varying environmental conditions during early development.  相似文献   

13.
Certain euryhaline teleosts can tolerate media of very high salinity, i.e. greater than that of seawater itself. The osmotic gradient across the integument of these fish is very high and the key to their survival appears to be the enhanced ability of the gill to excrete excess NaCl. These fish provide an opportunity to study morphological and biochemical aspects of transepithelial salt secretion under conditions of vastly different transport rates. Since the cellular site of gill salt excretion is believed to be the "chloride cell" of the branchial epithelium and since the enzyme Na,K-ATPase has been implicated in salt transport in this and other secretory tissues, we have focused our attention on the differences in chloride cell structure and gill ATPase activity in the variegated pupfish Cyprinodon variegatus adapted to half-strength seawater (50% SW), seawater (100% SW), or double-stregth seawater (200% SW). The Na,K-ATPase activity in gill homogenates was 1.6 times greater in 100% SW. When 50% SW gills were compared to 100% SW gills, differences in chloride cell morphology were minimal. However, chloride cells from 200% SW displayed a marked hypertrophy and a striking increase in basal-lateral cell surface area. These results suggest that there are correlations among higher levels of osmotic stress, basal-lateral extensions of the cell surface, and the activity of the enzyme Na,K-ATPase.  相似文献   

14.
Claudins are the major determinants of paracellular epithelial permeability in multicellular organisms. In Atlantic salmon (Salmo salar L.), we previously found that mRNA expression of the abundant gill-specific claudin 30 decreases during seawater (SW) acclimation, suggesting that this claudin is associated with remodeling of the epithelium during salinity change. This study investigated localization, protein expression, and function of claudin 30. Confocal microscopy showed that claudin 30 protein was located at cell-cell interfaces in the gill filament in SW- and fresh water (FW)-acclimated salmon, with the same distribution, overall, as the tight junction protein ZO-1. Claudin 30 was located at the apical tight junction interface and in cell membranes deeper in the epithelia. Colocalization with the α-subunit of the Na(+)-K(+)-ATPase was negligible, suggesting limited association with mitochondria-rich cells. Immunoblotting of gill samples showed lower claudin 30 protein expression in SW than FW fish. Retroviral transduction of claudin 30 into Madin-Darby canine kidney cells resulted in a decreased conductance of 19%. The decreased conductance correlated with a decreased permeability of the cell monolayer to monovalent cations, whereas permeability to chloride was unaffected. Confocal microscopy revealed that claudin 30 was expressed in the lateral membrane, as well as in tight junctions of Madin-Darby canine kidney cells, thereby paralleling the findings in the native gill. This study suggests that claudin 30 functions as a cation barrier between pavement cells in the gill and also has a general role in cell-cell adhesion in deeper layers of the epithelium.  相似文献   

15.
Using a monoclonal antibody for the alpha-subunit of the Na+/K(+)-ATPase, DASPEI (a vital mitochondria dye), and confocal laser scanning microscopy, the presence of Na+/K(+)-ATPase in mitochondrion-rich cells of the hagfish gill was confirmed. In addition, the level of Na+/K(+)-ATPase expression in the hagfish gill was compared to that of fishes with different osmoregulatory strategies (little skate, Raja erinacea and mummichog, Fundulus heteroclitus). Immunocytochemistry detected a high density of columnar cells expressing Na+/K(+)-ATPase in the afferent filamental epithelium. Positive cells were also found in the lamellar epithelium but at a much lower density. The distribution of DASPEI staining was similar to that of the Na+/K(+)-ATPase antibody, indicating that the enzyme is expressed in mitochondrion-rich cells. Immunoblot analysis confirmed the specificity of the antibody for the 97 kDa alpha-subunit of the enzyme. The immunoreactive band intensity for the Atlantic hagfish was similar to that of the little skate, but less than half that of the full-strength seawater mummichog. These results are discussed in relation to gill function in early craniates.  相似文献   

16.
Summary Changes in osmotic water permeability of the isolated gills of the Japanese eel,Anguilla japonica were studied during transfer to seawater or to fresh water. The water permeability increased gradually during the course of seawater transfer and attained a maximal level after 2 weeks. The water permeability of the freshwater eel gills was reduced when calcium ions were added to the incubation medium at a concentration of 1 mM, where-as no effect of the ion was observed on the gills of the seawater-adapted eel even at a higher concentration (10 mM). In contrast to seawater transfer, the water permeability decreased to a low level almost immediately (3 h) after transfer from seawater to fresh water. The acute reduction of the water permeability was also seen in the gills of the hypophysectomized eel after transfer to fresh water.The gradual increase in the gill water permeability during seawater transfer is correlated with an increase in the number of chloride cells. In scanning electron microscopy, chloride cells of seawater-adapted eel gills exhibit a pit-like structure, which was larger than in the freshwater eel. On transfer from seawater to fresh water, the pit diameter became smaller within 6 h. Hypophysectomy did not affect the change in gill surface structures during transfer to fresh water. The junctions between the chloride cells of seawater eel gills are reported to be of the leaky type. The parallel change in osmotic water permeability and in pit size of the chloride cells during seawater or freshwater transfer or after hypophysectomy suggests that these cells could provide a major route of water as well as ion movement.This paper is a portion of a thesis presented to Hokkaido University by t. Ogasawara in partial fulfilment of the requirements for Doctor of Fisheries  相似文献   

17.
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na(+)-K(+)-2Cl(-) cotransporter abundance, large and numerous Na(+)-K(+)-2Cl(-) cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na(+)-K(+)-2Cl(-) cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na(+)-K(+)-ATPase activity and Na(+)-K(+)-2Cl(-) cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na(+)-K(+)-2Cl(-) cotransporter in salt secretion by gill chloride cells of teleost fish.  相似文献   

18.
Glycine betaine has been suggested to improve the maintenance of ionic and osmotic homeostasis during seawater adaptation in teleost fish. Arsenobetaine may also behave as an osmolyte, due to its structural similarity to glycine betaine. The influence of seawater adaptation on intestinal uptake and muscle accumulation of arsenobetaine in the teleost Atlantic salmon (Salmo salar L.) was investigated. Atlantic salmon (freshwater and seawater adapted) were given a single oral dose of arsenobetaine, which was absorbed over the intestine within 6 h after exposure. Seawater adapted Atlantic salmon had significantly higher levels of accumulated arsenobetaine in blood compared to the freshwater adapted salmon. However, seawater adaptation had no effect on the levels of accumulated arsenobetaine in muscle tissue. Similar retention of the administered dose was found in muscle tissue in both freshwater and seawater adapted salmon, with 49+/-6% and 50+/-10% retention after 144 h, respectively. Results indicate that muscle retention was not influenced by salinity in seawater adapting teleosts.  相似文献   

19.
Summary The ultrastructure and density of chloride cells in the gill, opercular epithelium, and opercular skin of the euryhaline self-fertilizing fish Rivulus marmoratus (Cyprinodontidae) were studied with electron and fluorescence microscopy. R. marmoratus raised from birth in 1, 50, 100, and 200% seawater were compared. Chloride cells from fish raised in each of the four salinities exhibited an invaginated pit structure at the apical crypt. Multicellular complexes were present in the 1% seawater group and in those fish raised in higher salinities where elaborate interdigitations were seen between cells. Chloride cells from gills of fish raised in 200% seawater had a significantly higher percentage of their cytoplasmic volume composed of mitochondria than did those from fish raised in 1% seawater (69.9% vs 37.4%). The opercular skin and opercular epithelium had the same density of chloride cells (4.2×104-4.5×104 chloride cells/cm2), and this number did not vary significantly with increased salinity. The opercular skin thus appears far more responsive to environmental salinity than the opercular epithelium. Chloride cells from the opercular epithelium of fish raised in 200% seawater were found to be 39% larger than those from fish raised in 1% seawater, whereas the chloride cells from the opercular skin of the 200% seawater group were 107% larger than those from the 1% seawater group.  相似文献   

20.
Summary
  • 1 About 25 % of juvenile Atlantic salmon (Salmo salar) migrating downstream in the River Frome in southern England do so in the autumn rather than in the spring. Here, we examine the physiological status of these fish with regard to those features that adapt them to sea water during the parr–smolt transformation (i.e. gill Na+K+ ATPase activity; the number, size and type of chloride cells on the gill lamellae; salinity tolerance and relative plasma thyroid levels).
  • 2 Autumn migrants, and those fish which subsequently reside in the tidal reaches during the winter, are not sufficiently physiologically adapted to permit permanent or early, entry into the marine environment.
  • 3 It is not known what proportion of autumn migrating fish survive and return to spawn as adults. If significant numbers do return, however, the production from tidal reach habitats must be taken into account in the development of salmon stock management strategies, especially monitoring and assessment programmes, and in the evaluation of factors affecting stocks.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号