首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anal sacs of Thalassema thalassemum consist of an elongate tubular invagination (end sac) that is uniformly covered with numerous sessile ciliated funnels. While the funnels are composed of multi-ciliated, non-muscular cells and possess a ciliated neck-like constriction, the end sacs are lined by a simple epithelium of large, irregularly formed and sparsely ciliated cells that include masses of secretory granules. Podocytes are incorporated in the peritoneum that surrounds the anal sacs. A muscle grid consisting of inner longitudinal, outer circular and additional diagonal fibres that branch off of the circular fibres is embedded in the matrix between the end sac epithelium and peritoneum. Major structural differences between the hindgut and anal sacs support the hypothesis that the anal sacs are not gut derivatives but are instead part of a modified metanephridial system. Comparison of the anal sac morphology in Echiura reveals that T. thalassemum shares a tubular end sac with all known members of Thalassematinae and Ikedaidae, as well as with some members of Bonelliidae and Echiurinae, while the sessile funnels are apomorphic for the Thalassematinae.  相似文献   

2.
The trunk and tail mesoderm of hatchling chaetognaths consists of a simple myoepithelium containing four stereotypically arranged cell types, each matching in position a specific adult tissue. The trunk mesoderm includes lateral cells, longitudinal muscle cells, dorsal and ventral medial cells, and peri-intestinal cells. These correspond, respectively, to the lateral fields, longitudinal body wall muscles, dorsal and ventral perimysial cells, and periintestinal muscles of adults. Because the developing intestine does not extend into the tail, tail cells equivalent in position to peri-intestinal cells in the trunk are designated mesenterial cells. Numerous small spaces situated among the apices of hatchling mesodermal cells have the same position relative to surrounding cells as both the coelomic cavities of early embryos and the adult body cavities. We infer that these spaces in hatchlings expand and coalesce to form the definitive adult body cavities, and that these spaces and the adult body cavities derive from the embryonic coeloms. Because hatchlings lack mesenchymal mesoderm, we infer that all adult mesodermal tissues develop by elaboration of the coelomic lining of hatchlings. Because hatchlings lack cells corresponding to the squamous peritoneocytes overlying the body wall muscles of adults, we conclude that peritoneocytes are specialized adult cells that are not equivalent to cells of the embryonic coelomic lining. Finally, hatchlings contain a complete trunk/tail septum. This observation contradicts reports that this septum forms several days after hatching. It also weakens arguments that chaetognaths are bimeric rather than trimeric. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The mental glands of Hydromantes genei are considered a specialized form of the urodele serous cutaneous glands. Use of a variety of techniques of maceration and digestion as well as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) has shown the three-dimensional morphology of secretory and myoepithelial cells. Secretory cells are pyramidal and rest on an almost continuous layer of myoepithelial cells. The latter have a long ribbon-like body from which branch off transversal and longitudinal processes with swallow-tailed ends. Cytoplasmic processes of secretory cells, containing irregular dense vesicles, squeeze through clefts between myoepithelial cells and may reach, at some points, the basal lamina. The interstices between myoepithelium and secretory cells are extraordinarily rich in nerve endings with clear vesicles. The glandular outlets appear as elliptical stomata in the superficial layer of the epidermis and are lined by horny cells, which invaginate to circumscribe the excretory duct. The morphological results indicate that the myoepithelium of Plethodontidae mental glands differ in some respects from that of amphibian serous cutaneous glands. A double polarity for the secretory cells is also suggested. © 1993 Wiley-Liss, Inc.  相似文献   

4.
泥螺生殖系统的组织学   总被引:6,自引:2,他引:4  
泥螺为雌雄同体。生殖系统包括交媾器和生殖器本部。交媾器包括刺激器、阴茎和摄护腺;生殖器本部主要包括两性腺、缠卵腺和蛋白腺。刺激器和阴茎都具有非常发达的肌肉组织,腔壁游离面具纤毛。阴茎腔壁为单层柱状细胞;摄护腺被膜为一层薄的肌纤维,里面具有许多分泌细胞;缠卵腺被膜为单层扁平上皮,下层为环肌,腺体组织由分泌小管构成。蛋白腺主要由皮质层和导管层组成,皮质层内充满了分泌细胞,导管层由许多分泌小管构成,管壁为柱状腺细胞。  相似文献   

5.
6.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

7.
Female reproductive tracts of the viviparous neo-tropical onychophoran Peripatus acacioi have been examined at different times throughout the year, and the altering relationship between the developing embryo and the uterus is described. Depending on her age and time of year, the female may have one or two generations of embryos within her uterus. The uterine wall consists of a thin outer epithelium and basal lamina, three layers of muscles, and a thick basal lamina beneath an inner epithelium lining the uterus lumen. These layers are consistent along the length of the uterus apart from the inner epithelial lining, which varies according to position in the uterus and the developmental stage of embryos contained in the uterus. Early embryos are positioned along the length of the uterus and therefore have space in which to grow. During cleavage and segment formation, each embryo is contained within a fluid-filled embryo cavity that increases in size as the embryo grows. Morulae and blastulae are separated by lengths of empty uterus in which the epithelial lining appears vacuolated. Until the process of segment formation is complete, the embryos are attached to a placenta by a stalk and remain in the same part of the upper region of the uterus. As these embryos grow, the lengths of vacuolated cell-lined uterus between them decrease. Each embryo cavity is surrounded by the epithelial sac, the maternal uterine epithelium, which becomes overlaid by a thin layer of cells, the embryo sac, which is believed to be of embryonic origin. The placenta is a syncytial modification of the epithelial sac located at the ovarian end of each embryo cavity covered by the embryo sac and is analogous to the mammalian noninvasive epitheliochorial placenta. Segment-forming embryos have their heads directed toward the ovary. As the embryo gets longer during segment formation, its posture changes from coiled to flexed. Once segment formation is complete, the embryo loses contact with its stalk, an embryonic cuticle forms, and the embryo turns around so that its head is directed toward the vagina. The embryo escapes from its embryo sac and moves to the lower part of the uterus. In the lower part of the uterus, the straightened fetuses are first unpigmented but subsequently become pigmented as the secondary papillae on the body surface form and an adult-type cuticle forms beneath the embryonic cuticle. While the embryos are contained within their embryo cavities, nutrients are supplied by the placenta. Throughout development the mouth is open and in the mature fetus the gut is lined by peritrophic membrane and material is present in the gut lumen. Trachea have been observed only in fetuses that were ready for birth. Insemination, cyclical changes in the uterine epithelium, and the nature of the cuticle shed at parturition are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

8.
应用光学显微镜观察龟足(Capitulum mitella)消化系统的形态和组织结构。龟足的消化系统包括消化腺和消化道。消化腺一对,呈长囊状,含有分泌细胞(B细胞)、吸收细胞(R细胞)、储存细胞(F细胞)和胚细胞(E细胞)4种类型细胞。消化道呈U型,由口、食道、胃、肠、直肠和肛门组成,各部分的结构由内到外可分为黏膜层、黏膜下层、肌层和外膜4层。口器为咀嚼型,包括一片上唇、一对触须、一对大颚以及两对小颚。食道细短,具几丁质层但无基膜,管壁向腔内突起形成明显的纵褶突;食道前段的环肌特别发达,同时独有放射肌。胃略呈球袋状,肠较长;胃和肠的组织结构相似,没有几丁质层,上皮细胞都有发达的微绒毛。直肠细长,外膜分布有16组纵肌;直肠前段的组织结构与胃、肠相似,而直肠后段有几丁质层覆盖,黏膜层、黏膜下层、肌层和外膜渐退化,16组纵肌渐发达。肛门16组更加发达的纵肌挤入上皮细胞下方,在外膜外另出现一层明显的环肌。龟足消化道各部分的组织结构差异明显,反映了它们功能的差异。  相似文献   

9.
中华稻蝗受精囊的显微与超微结构   总被引:2,自引:0,他引:2  
在显微及亚显微水平上研究了中华稻蝗受精囊的结构。该结构由外向内依次为:围脏膜,肌肉层,结缔组织,基膜,上皮层和内膜层。其中内膜层又分为上表皮,外表皮和内表皮三层,其间可见许多分泌小管。上皮层分别由锥形分泌细胞和长柱形细胞组成,前者内含大量的分泌泡。肌肉层由环肌和纵肌构成,其中环肌比较发达。  相似文献   

10.
The epidermis of the tentacles of Phoronis australis consists of six cell types: supporting cells, choanocyte-like sensory cells, both types monociliated, secretory A-cells with a mucous secretion, and three kinds of B-cells with mucoprotein secretions. On cross-sections of the tentacle, one can distinguish four faces: the frontal one, heavily ciliated and located between the two frontolateral rows of sensory cells, the lateral and the abfrontal ones. The orientation of the basal structures of the cilia is related to the direction of their beat. The basiepidermal nervous system is grouped mainly at the frontal and abfrontal faces. The basement membrane is thickest on the frontal face and consists of circular collagen fibrils near the epidermis and longitudinal ones near the peritoneum. All peritoneal cells surrounding the mesocoel are provided with smooth longitudinal myofibrils, and isolated axons are situated between these cells and the basement membrane. The wall of the single blood capillary in each tentacle consists of epitheliomuscular cells with circular myofilaments, lying on a thin internal basal lamina; there is no endothelium.  相似文献   

11.
Upon copulation in female Agkistrodon piscivorus, sperm migrate up the oviduct to sperm storage tubules (SSTs) in the posterior infundibulum. The epithelium of the SSTs is composed of ciliated and secretory cells and differs ultrastructurally from that of the epithelium lining the lumen of the posterior infundibulum. Sperm pass through an area composed primarily of ciliated cells at the opening of each gland before aligning themselves in parallel arrays with their nuclei facing an area composed primarily of secretory cells at the base of the tubules. Sperm are also found embedded inter- and intracellularly in the SSTs. The secretory vacuoles in the SSTs become highly electron dense after the start of the fall mating season along with the synthesis of lipid droplets. Histochemical analysis reveals that the alteration in secretory material density is caused by the production of neutral carbohydrates. Some sperm remain in aggregates in the nonglandular section of the posterior uterus until the time of ovulation. However, ultrastructural evidence indicates these sperm degrade before ovulation. Therefore, sperm in posterior aggregates have no role in fertilization of ovulated ova. The data presented here support the hypothesis that infundibular sperm storage is the mode that snakes utilize to sequester viable sperm until ovulation.  相似文献   

12.
《Journal of morphology》2017,278(7):997-1011
The organization of the coelomic system and the ultrastructure of the coelomic lining are used in phylogenetic analysis to establish the relationships between major taxa. Investigation of the anatomy and ultrastructure of the coelomic system in brachiopods, which are poorly studied, can provide answers to fundamental questions about the evolution of the coelom in coelomic bilaterians. In the current study, the organization of the coelom of the lophophore in the brachiopod Lingula anatina was investigated using semithin sectioning, 3D reconstruction, and transmission electron microscopy. The lophophore of L. anatina contains two main compartments: the preoral coelom and the lophophoral coelom. The lining of the preoral coelom consists of ciliated cells. The lophophoral coelom is subdivided into paired coelomic sacs: the large and small sinuses (= canals). The lining of the lophophoral coelom varies in structure and includes monociliate myoepithelium, alternating epithelial and myoepithelial cells, specialized peritoneum and muscle cells, and podocyte‐like cells. Connections between cells of the coelomic lining are provided by adherens junctions, tight‐like junctions, septate junctions, adhesive junctions, and direct cytoplasmic bridges. The structure of the coelomic lining varies greatly in both of the main stems of the Bilateria, that is, in the Protostomia and Deuterostomia. Because of this great variety, the structure of the coelomic lining cannot by itself be used in phylogenetic analysis. At the same time, the ciliated myoepithelium can be considered as the ancestral type of coelomic lining. The many different kinds of junctions between cells of the coelomic lining may help coordinate the functioning of epithelial cells and muscle cells.  相似文献   

13.
To elucidate the cellular mechanism underlying the growth of the peritoneal cover of the gut sinus and the heart in the polychaete Arenicola marina, cellular organization of these structures and proliferative potential of their cells were investigated using electron microscopy and electron microscopic autoradiography. Arenicola has a pair of dorsolaterally situated hearts connected to the gut sinus via a short duct and composed of two muscular layers separated by a layer of the extracellular matrix (ECM). The peritoneal cover of the gut sinus and the outer muscular layer of the heart present a myoepithelial layer resting on the ECM. The inner muscular layer of the heart is composed of myofibril-containing cells lacking well-defined polarity in arrangement of organelles. However, their persistent connection to branches of the ECM and the adherens-like intercellular junctions allow for considering the inner layer a modified myoepithelium. In the peritoneal cover of the gut sinus and in both myoepithelial layers of the heart, noncontractile epithelial cells have been observed. As determined by thymidine labeling, these epithelial cells are capable of DNA synthesis, while myoepithelial cells are not. Some suggestions are made about the myogenic nature of the epithelial cells in the investigated structures of A. marina.  相似文献   

14.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The ultrastructure of the wall of the main blood vessels of the phoronid Phoronopsis harmeri is described. The walls of the lophophoral and left lateral vessels consist of myoepithelial cells of the coelomic lining (peritoneal cells), a thin basal lamina, and an incomplete endothelial lining. In the head region of the body, the wall of the medial vessel consists of myoepithelial cells of the coelomic lining (peritoneal cells), a basal lamina, and true muscular endothelial cells. The anterior part of the medial vessel functions as the heart. In the anterior part of the body, the medial vessel wall consists of five layers: the external nonmuscular coelothelium, a layer of the extracellular matrix, the internal muscular coelothelium, an internal layer of the extracellular matrix, and an incomplete endothelial lining. The complicated structure of the medial vessel wall may be explained by the superimposition of the lateral mesentery on the ordinary vessel wall.  相似文献   

16.
The ultrastructure of the seminal vesicle, ejaculatory duct, cirrus sac and cirrus is described. The epithelium of the seminal vesicle consists of a single layer of squamous to cuboidal cells. The apical ends of the cells have thin polymorphic lamellae and long narrow pits, both of which enclose normal spermatozoa. The cells have a moderate amount of GER and Golgi complexes which produce a lucid secretory body. The ejaculatory duct epithelium is composed of cuboidal to columnar cells between or through which project the terminal parts of the ducts of the unicellular prostate glands. The apical surfaces of the epithelia are extended into triangular or filiform projections having thin sinuous lamellae. The cytoplasm contains GER cisternae and Golgi complexes which synthesize a dense ovoid secretion. The cirrus sac and cirrus are covered by a thin modified tegument. The cirrus has many spines and the normal ratio of T1 and T2 type of secretory bodies, whereas the cirrus sac has few spines and the T2 type of secretory body predominates over the T1 type. The significance and possible functions of the structures observed in the three tissues are discussed.  相似文献   

17.
The ultrastructure of the cystid of Crisia eburnea has been studied. The cystid wall comprises an outer periostracum, a calcified layer and one inner cell layer, the ectoderm. The membranous sac, which consists of an outer basement membrane, a series of very thin annular muscle cells and an inner layer of epithelial cells, is interpreted as the detached mesoderm of the cystid wall. Accordingly, the atrial sphincter and the generally eight branched, longitudinal muscle cells connecting the terminal membrane and the membranous sac are interpreted as ectoderm. The membranous sac is attached to the cystid wall with two lateral ligaments and at four abfrontal areas: 1) a wide distal area, 2) an area at the origin of the retractor muscles, 3) a small area between 1 and 2, and 4) a small basal area at the origin of a pair of small muscle cells attached to the lowermost part of the caecum.
We infer that the protrusion of the polypide is caused by a sequential contraction of the annular muscle cells of the membranous sac, starting basally and aided by the contraction of the longitudinal ectodermal muscle cells.  相似文献   

18.
Abstract The hepatic region of Glossobalanus minutus is characterized by deep foldings of the dorsal side of the gut epithelium which affect the neighbouring tissues and structures: coelomic spaces, musculature and epidermis. The following cell types of the gut epithelium are described: vacuolated cells, undifferentiated cells, two types of mucous cells and two types of granular secretory cells. The nature and function of the different cell types are discussed. Data on the general ciliation and subepithelial nerve plexus of the gut epithelium are also given, with special mention of a possible neuroendocrine secretion towards the subjacent blood spaces. A well-developed blood sinus (gut sinus) lies between the gut and the visceral peritoneum. The ultrastructural features of the gut epithelium and its close association with the blood sinus point to an absorptive function. The coelomic cavity is reduced to a narrow space limited by two peritoneal sheets (visceral and parietal) of myoepithelial nature. Amoebocyte-like cells (coelomocytes) occur free in the coelomic fluid, and muscular, unicellular bridges are attached to both peritoneal walls across the coelomic space. The dorsal epidermis follows the gut foldings and is formed by flat, overlapping cells. The present observations are compared with previous histological, histochemical and ultrastructural data.  相似文献   

19.
Unlike the other penaeiodean shrimp, the ridge back shrimp, Sicyoniaingentis does not produce a spermatophore, but transfers sperm suspended in seminal plasm. This paper reports on the histomorphology and ultrastructure of the vas deferens with reference to its functional role in secreting the sperm bearing materials. The vas deferens is divisible into proximal secretory, mid storage and distal ejaculatory regions. The epithelial cells lining the proximal vas deferens are comprised of secretory and absorptive cell types. The loose sperm cells found in the lumen of this region are in an immature condition, and are agglutinated into a compact mass with signs of spermiogenesis in the mid vas deferens. The epithelial cells lining the mid vas deferens are short flattened cells. The distal vas deferens is ensheathed by muscular fibres. The inner epithelial cells are highly secretory and contain numerous microvilli at the luminal end. The sperm cord gets liquefied in this region facilitating the transfer of sperm in liquid form to the female during mating.  相似文献   

20.
The cement gland of Rhodnius prolixus is an epidermally derived tubular gland consisting of a distal synthetic region and a proximal muscular duct region. The synthetic region consists of numerous secretory units joined to a central chitinous duct via cuticular ductules. Proteinaceous secretion, synthesized by the goblet-shaped secretory cell, passes through the delicate cuticular lattice of a ductule-end apparatus and out through fine ductules to the central duct. Secretory cells are rich in rough endoplasmic reticulum and mitochondria. Light microscopy, SEM and TEM reveal the delicate lattice-like end apparatus structure, its formation and relationship to the secretory cell. The secretory cell associates via septate junctions with a tubular ductule cell that encloses a cuticle-lined ductule by forming an elaborate septate junction with itself. The ductules are continuous with the cuticle lining of the large central duct that conveys secretion to the proximal area. The proximal muscular duct has a corrugated cuticular lining, a thin epithelium rich in microtubules and thick longitudinal, striated muscles which contract during oviposition, forcing the secretion out. Histochemistry and electrophoresis reveal the secretion as proteinaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号