首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of extracellular inhibitors of papain and trypsin by Streptomyces sp. 22 was studied under different cultural conditions including complex and defined media, temperatures ranging from 18 °C to 37 °C and a variety of sole carbon and nitrogen sources. In complex nutritionally rich medium, maximal specific growth rates were obtained at 37 °C, whereas the highest specific production rates for both papain and trypsin inhibitors were registered at 18 °C. Studies on the effect of different carbon and nitrogen sources in defined media underline the importance of the nitrogen source as a strong regulator of the biosynthesis of both inhibitors. Enhanced formation of the inhibitory compounds occurred in the presence of casein. The dynamics of the formation of both inhibitors in defined media showed close association with growth. However, a partial separation of production phases for papain and trypsin inhibitors was observed in complex medium. The results imply differences in the regulation of biosynthesis of the two inhibitors.  相似文献   

2.
Aerobic, carbon-limited, enrichment cultures containing 3-aminobenzenesulfonate or 3-nitrobenzenesulfonate as the sole source of carbon and energy yielded growth and complete substrate disappearance. Pure cultures of putative pseudomonads were isolated which utilized these compounds quantitatively. Degradation was compared with that of 2- and 4-aminobenzenesulfonate.  相似文献   

3.
Algal growth on organic compounds as nitrogen sources   总被引:19,自引:0,他引:19  
Two experimental series were run to evaluate the potential of algal development on dissolved organic nitrogen (DON) compounds as the sole source of nitrogen (N) nutrition. Monocultures of several common Lake Kinneret algae (Pediastrum duplex, Synechococcus sp., Microcystis aeruginosa, Aphanizomenon ovalisporum and Cyclotella sp.) were incubated for 3 weeks in the laboratory with different inorganic (NH4+, NO3-) or organic (hypoxanthine, urea, guanine, ornithine, glucosamine, lysine) nitrogen sources. Even though the cultures were not axenic, marked differences were observed in algal growth response. Pediastrum, Cyclotella and Aphanizomenon grew well on most N sources, and cyanobacterial growth and yield were consistently greatest when the urea was the only N source. We also followed algal growth and eventual species dominance in batch samples of GF/F-filtered lake water, supplemented with orthophosphate and different inorganic or organic N compounds and inoculated with concentrated lake phytoplankton. Although no clear impact on phytoplankton growth (as chlorophyll concentration) was observed, in seven out of 11 experiments we could discern changes in the algal species that became dominant in flasks with different organic and inorganic N sources. Our results are consistent with the proposition that components of the DON pool are not only an important potential, direct or indirect N source for phytoplankton, but also that different algal species can exploit these sources with varying capabilities so that different N substrates may selectively stimulate the development of dominant algal species.   相似文献   

4.
Yeast strains utilizing uric acid, adenine, monoamines or diamines as sole source of carbon and energy were isolated from several soil samples by the enrichment culture method. The most common species wasTrichosporon cutaneum. Strains ofCandida catenulata, C. famata, C. parapsilosis, C. rugosa, Cryptococcus laurentii, Stephanoascus ciferrii andTr. adeninovorans were also isolated. All strains utilizing uric acid as sole carbon source utilized some primaryn-alkyl-l-amines hydroxyamines or diamines as well. The ascomycetous yeast strains showing these characteristics all belonged to species known to assimilate hydrocarbons. Type strains of hydrocarbon-positive yeast species which were not found in the enrichment cultures generally assimilated putrescine, some type strains also butylamine or pentylamine, but none assimilated uric acid. Methanol-positive species were not isolated. Type strains of methanol-positive and of hydrocarbon-negative species did not assimilate uric acid, butylamine or putrescine. Assimilation of putrescine as sole source of carbon and energy may be a valuable diagnostic criterion in yeast taxonomy.  相似文献   

5.
A new sulfate-reducing bacterium was enriched and isolated from marine sediment with phenol as sole electron donor and carbon source. Strain Ph01 grew well in defined media without growth factors. Further aromatic compounds oxidized by strain Ph01 were benzoate, phenylacetate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol, indole, anthranilic acid, and phenylalanine. Various fatty acids, alcohols and dicarboxylic acids were also utilized by strain Ph01. Sulfate and thiosulfate served as electron acceptors and were reduced to H2S. Stoichiometric measurements with strain Ph01 showed complete oxidation of phenol to CO2. Cytochromes and menaquinone MK-7(H2) were present; desulfoviridin could not be detected. Strain Ph01 is described as type strain of the new species Desulfobacterium phenolicum.In further marine enrichments with 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol or o-cresol as substrates and sulfate as electron acceptor a variety of morphologically different sulfate-reducing bacteria developed. However, since the new isolate strain Ph01 was able to degrade all these aromatic compounds (except o-cresol) no further studies with the enrichment cultures were carried out.  相似文献   

6.
The effect of algae on the production of musty-smelling compounds by actinomycetes was studied. Streptomyces spp., causing intensive musty odor, were isolated from hypertrophic Lake Kasumigaura and cultured in association with algae from the same lake. Isolate E and I effectively utilized the cyanobacteria, Microcystis aeruginosa and Anabaena spiroides, and the diatom, Synedra acus, as a carbon source and produced a musty-smelling 2-methylisoborneol in the shaken sediment cultures. High populations of algae and actinomycetes, and aerobic condition in the sediment seem responsible for the occurrence of musty odor in Lake Kasumigaura.  相似文献   

7.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

8.
Alcaligenes eutrophus was grown in batch cultures using either phenol as a sole substrate or mixtures of phenol and 4-chlorophenol. Phenol was found to be the sole source for carbon and energy while 4-chlorophenol was utilized only as a cometabolite. Maximum growth rates on phenol reached only 0.26 h-1, significantly below the growth rates reported earlier with Pseudomonas putida. The cometabolite was found to decrease biomass yield and increase lag time before logarithmic growth occurred. Both phenol and 4-chlorophenol were found to inhibit the growth rate linearly with maximum concentrations of 1080 ppm and 69 ppm respectively, beyond which no growth occurred. The best-fit parameters are incorporated into a simple, dynamic (i.e. time-varying) model capable of predicting all the batch growth conditions presented here. It is shown that P. putida is capable of faster bioremediation when phenol is the sole carbon source or for mixed substrates with low concentrations of the cometabolite, but for high concentrations of 4-chlorophenol, A. eutrophus becomes superior because of the long lag times that occur in the Pseudomonas species. Received: 25 January 1996/Received revision: 13 March 1996/Accepted: 15 April 1996  相似文献   

9.
Abstract The halophilic phototrophic bacterium Rhodospirillum salexigens was tested for growth on a variety of organic and inorganic nitrogenous compounds as sole nitrogen sources. In media containing acetate as carbon source, the amino acids glutamate, proline, and aspartate supported good growth of R. salexigens ; several other amino acids or ammonia did not support growth. Attempts to grow R. salexigens on ammonia led to the discovery that this organism excretes a highly basic substance under certain nitrogen nutritional conditions which raises the pH above that supporting growth. Cultures of R. salexigens transferred to media containing both pyruvate and acetate as carbon sources grew on ammonia as sole nitrogen source and the culture pH did not rise. Dual substrate experiments showed that R. salexigens utilized glutamate in preference to ammonia when both were present at equimolar concentrations.  相似文献   

10.
A bacterium capable of degrading propoxur (2-isopropoxyphenyl-N-methylcarbamate) was isolated from soil by enrichment cultures and was identified as a Pseudomonas species. The organism grew on propoxur at 2 g/l as sole source of carbon and nitrogen, and accumulated 2-isopropoxyphenol as metabolite in the culture medium. The cell free extract of Pseudomonas sp. grown on propoxur contained the activity of propoxur hydrolase. The results suggest that the organism degraded propoxur by hydrolysis to yield 2-isopropoxyphenol and methylamine, which was further utilized as carbon source.  相似文献   

11.
A bacterium capable of utilizing carbaryl as sole source of carbon was isolated from garden soil and identified as a Micrococcus species. The organism also utilized carbofuran, naphthalene, 1-naphthol, and several other aromatic compounds as growth substrates. The organism degraded carbaryl by hydrolysis to yield 1-naphthol and methylamine. 1-Naphthol was further metabolized via salicylate by a gentisate pathway, as evidenced by oxygen uptake and enzymatic studies. Received: 27 November 2000 / Accepted: 29 December 2000  相似文献   

12.
Rhizobium sp. isolated fromLeucaena leucocephala utilized catechin as sole carbon source. Optimum growth occurred at 2 to 5 mM. From replacement cultures containing catechin, phloroglucinolcarboxylic acid, phloroglucinol, resorcinol, protocatechuate, catechol and hydroxyquinol were separated by chromatography. Rothera's test confirmed theortho ring fission of the end products of catechin.  相似文献   

13.
Capsaicin contributes to the organoleptic attributes of hot peppers. Here, we show that capsaicin is utilized as a growth nutrient by certain bacteria. Enrichment cultures utilizing capsaicin were successfully initiated using Capsicum-derived plant material or leaves of tomato (a related Solanaceae) as inocula. No other sources of inoculum examined yielded positive enrichments. Of 25 isolates obtained from enrichments: all utilized 8-methylnonanoic acid; nine were found capable of degrading capsaicin as sole carbon and energy source; 11 were found capable of utilizing vanillylamine; but only two strains could use either of these latter two compounds as sole nitrogen source. Phylogenetic analysis of capsaicin degraders revealed them to be strains of Variovorax and Ralstonia, whereas the vanillylamine degraders were strains of Pseudomonas and Variovorax. Neither of the two strains isolated from one enrichment culture originally inoculated with dried pepper fruit was capable of using capsaicin as sole carbon and nitrogen source. However, good growth was achieved under such conditions when the two isolates, a strain of Variovorax paradoxusThat degraded capsaicin when provided with ammonium, and a vanillylamine degrading strain of Pseudomonas putida, were cultured together. A cross-feeding of capsaicin-derived carbon and nitrogen between members of pepper-associated consortia is proposed.  相似文献   

14.
The capability of utilizing 20 amino acids and 2 amides as the sole nitrogen source for growth was studied in two green algae (Chlorophyceae). A comparison was made of the growth rate of algae in a mineral nutrient solution containing nitrate as the nitrogen source, with that in the same solution in which nitrogen in the form of nitrate was substituted by an equivalent nitrogen amount in the form of various amino acids. In addition to this, another series of experiments was carried out in whioh both culture media were supplied with glucose. The results show that both algae utilize a series of amino acids in dependence of their structure (mostly 3-carbon amino acids). The growth rate ofChlorella in the presence of these sources is the same as in nitrate, that ofScenedesmus even much higher. In the cultures containing glucose both algal species exhibit a higher growth rate in the media with the nitrate nitrogen source than in those with amino acids (with the exception of glycine inScenedesmus).  相似文献   

15.
Hyphomicrobium species were enriched in media with methanol as sole carbon source under conditions supporting denitrification. Pure cultures of Hyphomicrobium species were isolated which denitrified vigorously with methanol. Hyphomicrobium B522, isolated by aerobic enrichment, was adapted to anaerobic growth and denitrification. Hyphomicrobium B522 and a new isolate were surveyed for anaerobic growth and denitrification on a number of simple organic compounds. Cell suspensions were tested for denitrifying activity. Nitrogen production from nitrate and nitrite and carbon dioxide production from methanol were stoichiometric.  相似文献   

16.
The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively during growth, while the fatty acid was dissimilated. The initial degradative reaction was shown to be hydrolytic and inducible. This amidase reaction could be demonstrated with crude cell extracts. The excreted N-methyltaurine could be utilized by other bacteria in cocultures. Complete degradation of similar natural compounds in bacterial communities seems likely.  相似文献   

17.
Microbiological analysis of soils from a polycyclic aromatic hydrocarbon (PAH)-contaminated site resulted in the enrichment of five microbial communities capable of utilizing pyrene as a sole carbon and energy source. Communities 4 and 5 rapidly degraded a number of different PAH compounds. Three pure cultures were isolated from community 5 using a spray plate method with pyrene as the sole carbon source. The cultures were identified as strains of Burkholderia ( Pseudomonas ) cepacia on the basis of biochemical and growth tests. The pure cultures (VUN 10 001, VUN 10 002 and VUN 10 003) were capable of degrading fluorene, phenanthrene and pyrene (100 mg l−1) to undetectable levels within 7–10 d in standard serum bottle cultures. Pyrene degradation was observed at concentrations up to 1000 mg l−1. The three isolates were also able to degrade other PAHs including fluoranthene, benz[ a ]anthracene and dibenz[ a , h ]anthracene as sole carbon and energy sources. Stimulation of dibenz[ a , h ]anthracene and benzo[ a ]pyrene degradation was achieved by the addition of small quantities of phenanthrene to cultures containing these compounds. Substrate utilization tests revealed that these micro-organisms could also grow on n -alkanes, chlorinated- and nitro-aromatic compounds.  相似文献   

18.
A bacterium capable of utilizing p-cresol as sole source of carbon and energy was isolated from soil and identified as a Bacillus species. The organism also utilized phenol, o-cresol, m-cresol, 4-hydroxybenzoic acid, and gentisic acid as growth substrates. The organism degraded p-cresol to 4-hydroxybenzoic acid, which was further metabolized by a gentisate pathway, as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extract. Such a bacterial strain can be used for bioremediation of environments contaminated with phenolic compounds.  相似文献   

19.
Summary Bacteria utilizing high concentrations of acetonitrile as the sole carbon source were isolated and identified asChromobacterium sp. andPseudomonas aeruginosa. Maximum growth was attained after 96 h of incubation andP. aeruginosa grew slightly faster thanChromobacterium sp. The strains were able to grow and oxidize acetonitrile at concentrations as high as 600 mM. However, higher concentrations inhibited growth and oxygen uptake. Degradation studies with (14C)acetonitrile indicated 57% of acetonitrile was degraded byPseudomonas aeruginosa as compared to 43% byChromobacterium. The isolates utilized different nitrile compounds as carbon substrates.  相似文献   

20.
Photoassimilation of Glycolate, Glycine and Serine by Euglena gracilis   总被引:1,自引:0,他引:1  
SYNOPSIS. Glycolate was readily utilized for growth by Euglena gracilis , strain Z, in the light at pH 3.8 under a variety of atmospheric conditions, including CO2-free air and nitrogen. Glycolate did not support growth in the dark as sole carbon source; no significant uptake of glycolate was observed under these conditions. However, cells grown in the light with glycolate as sole carbon source were still capable of glycolate uptake for up to 3 hr after transfer to darkness, and glycolate was taken up by cells utilizing glucose in the dark. The energy requirement for glycolate utilization could thus be met either by light, or by the aerobic metabolism of glucose in the dark. DCMU, an inhibitor of photosystem II, inhibited photoassimilation of glycolate. In the light, but again not in the dark, glycine and serine also served as sole source of carbon under CO2-free air, but not under nitrogen. Net release of ammonia to the medium accompanied the photoassimilation of glycine and serine. Of the several metabolicallyrelated compounds tested, only glycolate was utilized as sole carbon source in the light under "anaerobic" conditions. A lag in net chlorophyll synthesis occurred during the photoassimilation of glycolate glycine or serine. Determination of rates of photosynthetic 14CO2 fixation confirmed that some inhibition of photosynthetic capacity had occurred in response to utilization of glycolate and related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号